
• UNISYS A Series
DCALGOL
Programming
Reference Manual

Release 3.9.0

Priced Item

September 1991

Printed in U S America
86000841-000

• UNISYS Product Information
Announcement
o New Release 0 Revision • Update 0 New Mail Code

Title
A Series DCALGOL Programming Reference Manual

This Product Information Announcement announces Update 2 to the September 1991 publication of the A Series
DCALGOL Programming Reference Manual. This update is relative to the Domain Name Service (DNS) Kit, dated
June 1993, which is based on the Mark 4.0.1 System Software Support Release.

Changes and additions were made to Transfer Station Control (DCWRITE Type = 45 and Result Class = 16).

In addition, various technical and editorial changes have. been made to improve the quality and usability of the
document.

Changes are indicated by vertical bars in the margins of the replacement pages.

Remove

iii through iv
3-13 through 3-14
5-55 through 5-60
6-39 through 6-42

To order additional copies of this document

Insert

iii through iv
3-13 through 3-14
5-55 through 5-60
6-39 through 6-42B

• United States customers, call Unisys Direct at 1-800-448-1424.
• All other customers, contact your Unisys Sales Office.
• Unisys personnel, use the Electronic Literature Ordering (ELO) system.

Announcement only: Announcement and attachments: System:
AS175 Release:

A Series
4.0.1 June 1993

Part Number: 8600 0841-020

• UNISYS Pro'd uct Information
Announcement
o New Release 0 Revision • Update 0 New Mail Code

Title
A Series DCALGOL Programming Reference Manual

These pages update the A Series DCALGOL Programming Reference Manual. This update is relative to the Mark
4.0.0 release of the A 'Series DCALGOL compiler, for use with the Mark 4.0.0 release, or higher, of the A Series
operating system.

Various technical and editorial changes have been made to improve the quality and usability of the document.

Changes are indicated by vertical bars in the margins of the replacement pages.

Remove

iii through iv
vii through viii
1-1 through 1-4
2-5 through 2-6
3-1 through 3-6
3-17 through 3-18
3-41
4-1 through 4-12
6-39 through 6-42
6-47 through 6-48
Bibliography-1 through 4

To order additional copies of this document

Insert

iii through iv
vii through viii
1-1 through 1-4
2-5 through 2-6
3-1 through 3-6
3-17 through 3-18
3-41
4-1 through 4-12
6-39 thr.ough 6-42
6-47 through 6-48
Bibliography-1 through 4

• United States customers call Unisys Direct at 1-800-448-1424
• All other customers contact your Unisys Subsidiary Librarian
• Unisys personnel use the Electronic Literature Ordering (ELO) system

Announcement only: Announcement and attachments: System:
AS175 Release:

A Series
4.0.0 July 1992

Part Number: 8600 0841·010

•
UNISYS' A Series

DCALGOL
Programming
Reference Manual

Copyright © 1991Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

Printed in U S America
8600 0841-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or

. software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by
using the Business Reply Mail form at the back of this manual or by addressing remarks directly to
Unisys Corporation, Technical Publications, 25725 Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page

iii through iv
v through vi
vii through viii
ix through xvii
xviii
xix
xx
1-1 through 1-4
1-5 through 1-12
2-1 through 2-4
2-5 through 2-6
2-7 through 2-17
2-18
3-1 through 3-6
3-7 through 3-13
3-14
3-15 through 3-16
3-17 through 3-18
3-19 through 3-40
3-41
3-42
4-1 through 4-12
4-13 through 4-17
4-18
5-1 through 5-55
5-56 through 5-58
5-58A through 5-58B
5-59
5-60 through 5-105
5-106
6-1 through 6-38
6-39
6-40 through 6-42A
6-42B
6-43 through 6-46
6-47 through 6-48
6-49 through 6-65
6-66
A-I through A-4
B-1 through B-3
B-4

8600 0841-020

Issue

-020
-000
-010
-000
Blank
-000
Blank
-010
-000
-000
-010
-000
Blank
-010
-000
-020
-000
-010
-000
-010
Blank
-010
-000
Blank
-000
-020
-020
-020
-000
Blank
-000
-010
-020
Blank
-000
-010
-000
Blank
-000
-000
Blank

iii

Page Status

iv

Page Issue

C-I through C-9 -000
C-IO Blank
Glossary-I through Glossary-26 -000
Bibliography-I through
Bibliography-3 -0 I 0
Bibliography-4 Blank
Index-I through Index-13 -000
Index-I4 Blank

Unisys uses an II-digit document numbering system. The suffix of the document number
(1234 5678-xyz) indicates the document level. The first digit (x) designates a revision level;
the second digit (y) designates an update level. For example, the first release of a document
has a suffix of -000. A suffix of -130 designates the third update to revision 1. The third
digit (z) is used to indicate an errata for a particular level and is not reflected in the page
status summary.

8600 0841-020

About This Manual

Purpose
The A Series DCALGOL Programming Reference Manual provides information on
the Data Communications ALGOL (DCALGOL) language. The manual provides
information on all the constructs that have application in the control and
implementation of a data communications (data comm) environment. It also
documents constructs that are useful for interfacing or implementing specialized
system programs, such as supervisor programs and performance monitoring tools.

Scope
This manual applies to all Unisys A Series computer systems. While DCALGOL is
a high-level language that includes the full syntax of the Unisys A Series ALGOL
language, only those constructs that are directly connected with the writing of a
message control system (MCS) to control a data comm environment are included
in this manual. These constructs control the following activities:

• Creating messages

• Inserting messages into queues

• Removing messages from queues

• Combining, creating, and changing queues

• Controlling the data comm subsystem

This manual does not document the ALGOL language subset, the SYSTEMSTATUS
or MAKE USER procedures, or the private procedures CANDEFILEHANDLER,
CANDEFILETTER, and ATTRIBSEARCHER. Refer to "Related Product
Information" in this preface for a list of manuals that address these topics.

Audience
This manual is written for data comm programmers.

Prerequisites
This manual assumes that you are proficient at using ALGOL. It assumes that you
are familiar with general strategies for creating an MCS. The manual further
assumes that you are familiar with the data comm subsystem and logical
input/output (I/O) operations, including message and file manipulations.

8600 0841-000 v

About This Manual

Installation managers should be aware of the power of DCALGOL. Although the
language has built-in user restrictions, inexperienced use of the DCALGOL
language can cause system failure, data disruption, and operational problems. A
program that uses DCALGOL constructs must have the following characteristics:

• Be privileged through use of the system command PP (Privileged Program)

• Be an MCS program

• Run under a privileged usercode or by a CONTROLCARD function

Installation managers can secure the DCALGOL compiler to prevent unauthorized
use. Because the DCALGOL compiler is created by compiling the ALGOL symbolic
file with the compiler generation option DCALGOL turned on, it might be wise to
also protect the ALGOL symbolic file.

How to Use This Manual
This manual is intended to be used as a reference source, not as a task-based set
of instructions. The following conventions are observed:

• Unless otherwise noted, all guides referred to in the text of this manual are
for A Series systems. .

• The manual uses railroad diagrams to depict language constructs. A railroad
diagram is a way of graphically representing the syntax of a statement. It
shows which items are required and which are optional, the order in which
items should appear, how often you can repeat an item, and any punctuation
required in a statement. For information on reading and using railroad
diagrams, refer to the appendix "Understanding Railroad Diagrams."

• The standard arithmetic operators "+", "-", "*", and "**,, are used in this
manual to signify addition, subtraction, multiplication, division, and
exponentiation, respectively. .

Organization,

This manual consists of six sections and three appendixes.

Section 1. Declarations

This section describes data types unique to DCALGOL.

Section 2. Statements

This section describes DCALGOL statements.

Section 3. Functions

This section describes the DCALGOL functions.

Section 4. Attributes

This section defines the DCALGOL attributes and explains their uses.

vi 8600 0841-000

About This Manual

Section 5. DCWRITE Information

This section defines general and specific DCWRITE types.

, Section 6. MCS Result Message Formats

This section explains the general and specific result message formats. Information
includes a list of message classes along with a description of each input message
class.

Appendix A. Sample MCS

This appendix contains a sample MCS.

Appendix B. Reserved Words

This appendix contains a list of reserved words.

Appendix C. Understanding Railroad Diagrams

This appendix explains how to interpret railroad syntax diagrams.

In addition, a glossary, a bibliography, and an index appear at the end of the
manual.

Related Product Information

A Serle. ALGOL Progra,mmbag Reference Manual, Volume 1: BaIlie
Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with
programming concepts.

A Serle. Oommwalcatiou MGllGgement SyBtem (OOMS)
ConjlguratJon Guide (8600 0312)

This guide provides an overview of the basic concepts and functions of COMS. It
includes instructions for creating a working COMB configuration and information ,
on how to monitor and fine-tune COMB system performance. This guide is written
for installation analysts, systems analysts, programmers, administrators, and
performance analysts.

A Serle. GETSTATUS/SETSTATUS Programmbag
Reference MamuJl (8600 0346)

This manual explains how to use the various GETSTATUS and SETSTATUS calls
used in the DCALGOL programming language. The manual is written for
experienced ALGOL programmers who are involved with data communications.

8600 0841-010 vii

About This Manual

viii

A Series File Attributes Progra,mmlng Reference MtJlUUJl (8600 0064).

This manual contains information about each file attribute and each direct I/O
buffer attribute. The manual is written for programmers and operations
personnel who need to understand the functionality of a given attribute. The
A Series I/O Subsystem Programming Guide is a companion manual.

A Series Interactive Datacomm ConJl,gurator (IDC)
Operations Gu'de (1169810)

This guide explains how to use IDC, a menu-driven utility used to deime and
modify data communications networks. It provides information on configuring a
data communications network using the IDC menu system and basic constructs,
and provides reference information about the commands and attributes. This
guide is written for individuals who have a basic knowledge of data
communications concepts, but who might not know the physical characteristics of
hardware devices in the network.

A Series Security Adm'nlBtratlon Gulde (8aOO 0973)

This guide describes systems-level security features and suggests how to use
them. It provides administrators with the information necessary to set and
implement effective security policy. This guide is written for system
administrators, security administrators, and those responsible for establishing
and implementing security policy.

A Series System Commands Operatlons Jl(if'erence Manual (8100 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators
and administrators.

A Serles System Softu!are Support Rfiference MGIUUJI (8100 0478)

This manual describes a number of facilities used for system monitoring and
debugging, including BARS, DUMPANALYZER,LOGANALYZER, and LOGGER. It
also describes the format of the SUMLOG file. This manual is' written for system
support personnel and operators.

A Series SYSTEMSTATUS Programming Jl(if'erence Jlanual (8600 04&2)

This manual documents the SYSTEMSTA TUS intrinsic of the Master Control
Program (MCP). The SYSTEMSTATUS intrinsic provides information that can be
used to efficiently monitor the performance of a running system. This manual is
written for systems programmers.

A Series Task Attributes Programming Jl(if'erence Manual (8600 0502)

This manual describes all the task attributes available on A Series systems. It also
give examples of statements for reading and assigning task attributes in various
programming languages. The A Series Task Management Programming Guide is a
companion manual.

8600 0841-010 .

Contents

About This Manual v

Section 1. Declarations

DISKHEADER ARRAY Declaration 1-1
EPILOG PROCEDURE Declaration 1-2
EXCEPTION PROCEDURE Declaration 1-4
MESSAGE and MESSAGE ARRAY Declarations 1-6
QUEUE and QUEUE ARRAY Declarations 1-10
QUEUE ARRAY REFERENCE Declaration 1-12

Section 2. Statements

ALLOCATE Statement 2-1
ATTACH Statement . 2-2
COMBINE Statement . 2-3
DCKEYIN Statement '.' . " 2-4
Diskheader CLEAR Statement 2-6
Diskheader READ/WRITE Statement . 2-7

. FLUSH Statement '" 2-10
INSERT Statement . 2-11
ON Statement '.' . 2-13
RESIDENT Statement . 2-14
STANDARDTODISPLAY Statement 2-17

Section 3. Functions

A TT ACHSPOQ Function ... 3-1
CHECKGUARDFILE Function 3-2
CONTROLCARD Function . 3-4

WFL Card Image (Variant = 1) 3-5
COPY Function . 3-7
DCERRANAL YSIS Function , 3-9
DCERRORLOGGER Function 3-11
DCSYSTEMTABLES Function . 3-12
DCWRITE Function 3-15
DISPLAYTOSTANDARD Function 3-16
GETSTATUS· Function . 3-19
MAKEUSERCODE Function 3-20
MCSLOGGER Function . 3-22

8600 0841-000 ix

Contents

NULL Function 3-23
QUEUEINFO Function 3-24
REMOVE Function . 3-25
SETSTATUS Function . 3-26
SETUPINTERCOM Function , 3-27
SIZE Function .. 3-33
SYSTEMSTATUS Function . 3-34
USERDATA Function 3-35
USERDATAFREEZER Function 3-37
USERDATALOCATOR Function 3-38
USERDATAREBUILD Function 3-39
WRITESPO Function 3-40

Section 4. Attributes

Diskheader Attributes . 4-1
BLOCKSIZE . 4-3
DATE .. 4-3
DUPLICATED 4-3
EOFBITS . 4-3
EOFSEGMENT 4-3
EUNUMBER .. 4-4
FILEKIND . 4-4
FI LETYPE . 4-4
lAD ... 4-4
LASTACCESSDATE . 4-4
MAXRECSIZE . 4-5
MINRECSIZE . 4-5
MODE 4-5
ROWADDRESS 4-5
ROWS 4-5
ROWSIZE . 4-6
SAVEFACTOR . 4-6
SIZEMODE 4-6
SIZEOFFSET . 4-6
SIZE2 4-6
UNITS 4-7

Queue Attributes . 4-8
QACTIVE ; • . 4-8
QBLOCKSIZE . 4-9
QDISKERROR . 4-9
QHEADSIZE . 4-10
QINSERTEVENT 4-10
QMEMORYLIMIT .. 4-11
QMEMORYSIZE 4-11

. QMESSAGECOUNT 4-11
QREMOVEWAIT 4-12
QROWSIZE " . 4-12
QSIZE 4-12
QTANK 4-13
QUSERCOUNT . 4-13

x 8600 0841-000

Contents

Task Attributes . 4-14
AUTOSWITCHTOMARC 4-14
BACKUPFAMILY 4-15
DESTNAME . 4-15
DESTSTATION 4-15
DISPLAYONLYTOMCS 4-15
INHERITMCSSTATUS . 4-15
MAX.WAIT 4-16
ORGUNI'T 4-16
SOURCEKIND . 4-16
SOURCESTATION . 4-16
STATION .. '......... 4-16
TANKING . 4-16

Section 5. DCWRITE Information

General DCWRITE Information . 5-1
DCWRITE Message Format 5-1

Type Field (MSG[0].[47:08]) 5-3
Variant Field (MSG[0].[39: 16])' 5-3
LSN/FRSN/DLS Field (MSG[0].[23:24]) 5-4
Priority Output Field (MSG[I].[47:08]) 5-4
TOGGLE and TALLY Fields (MSG[I].[39:08] and

MSG[3].[23:24]) . 5-4
Retry Count Field (MSG[2].[47:08]) 5-4
Text Size Field (MSG[2].[39:16]) 5-4
Message Number Field (MSG[4].[47:24]) 5-5
Text (Beginning at MSG[6]) 5-5

MCS Calls on DCWRITE . 5-5
Summary of DCWRITE . 5-6
Pseudostations and Fully Participating MeSs 5-15

Pseudostations . 5-15
MCS Participation in Data Comm Functions (Full

Participation) . 5-16
Specific DCWRITE Information 5-17

INITIALIZE PRIMARY QUEUE
(DCWRITE Type = 0) 5-17

STATION ATIACH (DCWRITE Type = 1) 5-20
INTERROGATE MCS (DCWRITE Type = 2) 5-24

Indexing . 5-24
MSG[INX] := MSG[6].[07:08] 5-26
MSG[MSG[INX].[23:08]]5-26
MSG[MSG[INX].[15:08]] 5-26

INTER-MCS COMMUNICATE
(DCWRITE Type = 3) 5-28

INTERROGATE STATION ENVIRONMENT
(DCWRITE Type = 4) . 5-29

ATIACH SCHEDULE STATION
(DCWRITE Type = 5) 5-33

Station Information 5-34
Terminal Information 5-34

8600 0841-000 xi

Contents

CHANGE CURRENT QUEUE
(DCWRITE Type = 32) ,. 5-36

WRITE (DCWRITE Type = 33) 5-38
READ-ONCE ONLY (DCWRITE Type = 34) 5-40
ENABLE INPUT (DCWRITE Type = 35) 5-41
DISABLE INPUT (DCWRITE Type = 36) 5-43
MAKE STATION READY/NOT READY

(DCWRITE Type = 37) . 5-44
SET APPLICATION NUMBER

(DCWRITE Type = 38) . 5-46
SET CHARACTERS (DCWRITE Type = 39) 5-47
SET TRANSMISSION NUMBER

(DCWRITE Type = 40) . 5-49
RECALL MESSAGE (DCWRITE Type = 41) 5-50
STATION DETACH (DCWRITE Type = 42) 5-52
SET/RESET LOGICALACK (DCWRITE Type = 43) 5-54
ACKNOWLEDGE (DCWRITE Type = 44) '" '" ... 5-55
TRANSFER STATION CONTROL

(DCWRITE Type = 45) 5-56
MSG[O].[27:01] = 0 5-57
MSG[0].[27:01] = 1 5-57

WRITE AND RETURN (DCWRITE Type = 46) 5-60
NULL STATION REQUEST (DCWRITE Type = 48) 5-61
SET/RESET SEQUENCE MODE

(DCWRITE Type = 49) ., " . .. 5-62
MSG[0].[39:16] = 1 5-62

WRITE TO TRANSFERRED STATION
(DCWRITE Type = 53) . 5-64

SEND MCS RESULT MESSAGE
(DCWRITE Type = 55) . 5-66

SET PSEUDOSTATION ATIRIBUTES
(DCWRITE Type = 56) . 5-67

STATION ASSIGNMENT TO FILE
(DCWRITE Type =64) 5-69

Output Tanking for Remote Files 5-71
MCS Participation in I/O 5-73
Stations without Line Assignments 5-74

WRITE TO OBJECT JOB (DCWRITE Type = 65) . . . 5-76
STATION BREAK (DCWRITE Type = 66) 5-77
ADD STATION TO FILE (DCWRITE Type = 67) 5-78
CHANGE TERMINAL ATIRIBUTES

(DCWRITE Type = 68) 5-80
SUBTRACT STATION FROM FILE

(DCWRITE Type = 69) . 5-82
Line-Oriented Requests . 5-83

MAKE LINE READY (DCWRITE Type = 96) 5-83
MAKE LINE NOT READY (DCWRITE Type = 97) 5-85
DIALOUT (DCWRITE Type = 98) 5-86
DISCONNECT (DCWRITE Type = 99) 5-88
INTERROGATE SWITCHED STATUS

(DCWRITE Type = ~01) 5-89

xii 8600 0841-000

Contents

SET/RESET AUTOANSWER
(DCWRITE Type = 102)

SET/RESET LINE TOGS-TALLYS
(DCWRITE Type = 103)

LINE INTERROGATE (DCWRITE Type = 104)
FORCE LINE NOT READY

(DCWRITE Type = 105)
Reconfiguration Request DCWRITE Types

SWAP LINES (DCWRITE Type = 128)
EXCHANGE LSPS (DCWRITE Type = 129)
MOVE/ADD/SUBTRACT STATION

(DCWRITE Type = 130)
MSG[0].[25:01] = 1

Physical Attributes
Logical Attributes
DCWRITE Errors

UPDATE LINE ATTRIBUTES
(DCWRITE Type = 131)

DCWRITE Errors "

Section 6. MCS Result Message Formats

5-90

5-91
5-92

5-93
5-94
5-94
5-96

5-98
5-98
5-99

5-101
5-101

5-103
5-104

General Result Message Format 6-1
Class Field (MSG[0].[47:08]) 6-2
Variant Field (MSG[0].[39: 16]) 6-3
LSN Field (MSG[0].[23:24]) . 6-4
Result-byte Index Field (MSG[I].[47:08]) 6-4
Toggle Field (MSG[I].[39:08]) 6-4
Last Error Flag Set Field (MSG[I].[31:08]) 6-4
Error Flag Field. (MSG[I].[23:24]) 6-4
Retry Count Field (MSG[2].[47:08]) 6-5
Text Size Field (MSG[2].[39: 16]) 6-6
Transmission Number Field (MSG[2].[23:24]) 6-6
Time Field (MSG[3].[47:24]) . 6-6
TALLY[O], TALLY[l], and TALLY[2] 6-6
Message Number Field (MSG[4].[47:24]) 6-6
Original DCWRITE Type Field (MSG[4].[23:24]) 6-7
Sequence Number Present Field (MSG[5].[27:01] 6-7
Sequence Number Field (MSG[5].[26:27]) 6-7
Text (beginning at MSG[6]) . 6-7

Specific Result Message Formats . 6-8
GOOD INPUT RECEIVED (Result Class = 0) 6-9
STATION EVENT (Result Class = 1) 6-10
FILE OPEN (Result Class = 2) 6-12

Station Transfer File Open 6-13
OBJECT JOB OUTPUT (Result Class = 3) 6-15
FILE CLOSE (Result Class = 4) 6-16

Station Transfer FILE CLOSE 6-16
GOOD RESULTS (Result Class = 5) 6-17

Variant Field in Response to RECALL
MESSAGE , 6-18

86000841-000 xiii

Contents

RECALLED MESSAGE (Result Class = 6) 6-19
SWITCHED STATUS RESULT (Result Class = 7) 6-20
LSP EXCHANGE RESULT (Result Class = 8) 6-21
LINE STATUS CHANGE RESULT

(Result Class = 9) . 6-23
SWAP LINE RESULT (Result Class = 10) 6-24
MOVE/ADD/SUBTRACT STATION RESULT

(Result Class = 11) ... 6-25
DLS UPDATE RESULT (Result Class = 12) 6-26
INTER·MCS COMMUNICATE RESULT

(Result Class = 13) . 6-27
STATION DETACHED (Result Class = 14) 6-28
INTERROGATE STATION ENVIRONMENT RESULT

(Result Class = 15) . 6-29
Explanation of Expanded Message Format 6-30
INX : = MSG[6].[07:08] (First Entry Index) . . . 6-32
MSG[MSG[INX].[47:08]] 6-32
MSG[MSG[INX].[39:08]] 6-32
MSG[MSG[INX].[31:08]] 6-32

First Word: MSG[MSG[INX].[31:08]] 6-33
Second Word: MSG[MSG[INX].[31:08]+ 1]

(NSP Line Information Not
Requested) .. , . 6-34

Second Word: MSG[MSG[INX].[31:08]+ 1]
(NSP Line Information Requested) . . . 6-34

Third Word: MSG[MSG[INX].[31 :08] + 2]
(NSP Line Information Requested) . . . 6-35

Fourth Word: MSG[MSG[INX].[31:08]+3]
(NSP Line Information Requested) . . . 6-35

Fifth Word: MSG[MSG[INX].[31:08]-t-4]
(NSP Line Information Requested) . . . 6-35

MSG[MSG[INX].[23:08]] 6-36
First Word: MSG[MSG[INX].[23:08]] 6-36
Second· Word:

MSG[MSG[INX].[23:08]+ 1] 6-36
MSG[MSG[INX].[15:08]] ,. . 6-36

First Word: MSG[MSG[INX].[15:08]] 6-36
Second Word:

MSG[MSG[INX].[15:08]+ 1] 6-37
Third Word: MSG[MSG[INX].[15:08]+2]

(NSP Information Not Requested) 6-38
Third Word: MSG[MSG[INX].[15:08]+2]

(NSP Information Requested) 6-38
Fourth Word:

MSG[MSG[INX].[15:08]+3] 6-38
Fifth Word:

MSG[MSG[INX].[15:08]+4] 6-39
Sixth Word:

MSG[MSG[INX].[15:08]+5] 6-39
Seventh Word:

MSG[MSG[INX].[15:08]+6] 6-39

xiv 8600 0841-000

Contents

Eighth Word:
MSG[MSG[INX].[15:08]+ 7] 6-39

Ninth Word:
MSG[MSG[INX].[15:08]+8] 6-39

Tenth Word:
MSG[MSG[INX].[15:08]+9] 6-39

Eleventh Word . 6-39
TRANSFER STATION CONTROL RESULT

(Result Class = 16) . 6-40
INX : = MSG[6].[32:09] (Header Word of

Information Area) . 6-41
INX := MSG[6].[32:09] + 1 (First Word of

Information Area) . 6-41
INX: = INX + MSG[INX +4].[15: 16] (First Word

of Usercode Location) 6-42
ODT·TO·MCS RESULT (Result Class = 17) 6-43
ODT·TO·STATION RESULT (Result Class =:= 18) 6-44
UPDATE LINE ATIRIBUTES RESULT

(Result Class = 19) . 6-45
MESSAGE FROM CONTROLLER RESULT

(Result Class = 21) 6-46
LINE INTERROGATE RESULT (Result Class = 24) . 6-49
OBJECT JOB INPUT REQUEST RESULT

(Result Class = 25) . 6-50
INTERCEPTED MESSAGE RESULT

(Result Class = 29) 6-51
NSPINITIALIZED RESULT (Result Class = 30) 6-53
STATION REINITIALIZED (Result Class = 31) 6-54
POWER OFF PENDING RESULT

(Result Class = 32) . 6-55
DDT MODE SWITCH NOTICE RESULT

(Result Class = 80) . 6-56
INPUT FROM AN ODT RESULT

(Result Class = 81) . 6-57
ERROR RESULT (Result Class = 99) 6-58

Line/Station Format of ERROR RESULT
Message . 6-58

Error Results in Line/Station Format 6-58
Result Byte Index . 6-59
Line Status Prior to Abort

(MSG[I].[39:06]) 6-60
NOLI! LlNE.TOG_l and NOLI!

LlNE.TOG_O . 6-60
Switched Status Format of ERROR RESULT

Message 6-61
Error Results in Switched Status

Format 6-62
Using Switched Status Format 6-62
Switched Status Byte Values 6-63
Switched Status Format Flags after
. DIALOUT . 6-63

8600 0841-000 xv

Contents

xvi

Switched Status Format Flags after
DISCONNECT . 6-64

Switched Status Format Flags after
INTERROGATE SWITCHED STATUS 6-64

Switched Status Format Flags SET/RESET
AUTOANSWER 6-64

Switched Status Format Flags after
Automatic Switched Status 6-65

Appendix A. Sample MeS

Appendix B. Reserved Words

Type 1
Type 2
Type 3

B-1
B-1
B-2

Appendix C. Understanding Railroad Diagrams

What Are Railroad Diagrams? . C-1
Constants and Variables . C-2
Constraints ... C-2

Vertical Bar . C-3
Percent Sign . C-3
Right Arrow . C-3
Required Items . C-3
User-Selected Items . C-3
Loop ' '. C-4
Bridge C-4

Following the Paths of a Railroad Diagram C-5
Railroad Diagram Examples with Sample Input C-6

Glossary

Bibliography

8600 0841-000

Figures

5-1. INTERROGATE MCS Index Diagram 5-25

6-1. INTERROGATE STATION ENVIRONMENT RESULT Index Diagram 6-31
6-2. Interpretation of MSG[MSG[INX].[31:08]] . 6-33

8600 0841-000 xvii

Tables

3-1. Format 1 for SETUPINTERCOM Function Messages 3-28
3-2. Format 2 for SETUPINTERCOM Function Messages 3-30
3-3. Bits for Message Component Word . 3-32

5-1. DCWRITE Message Format (General) . 5-2
5-2. Summary of DCWRITE Types . 5-6
5-3. Summary of DCWRITE Errors . 5-7
5-4. Results from the DCWRITE Function 5-11
5-5. Dialing Sequence Operators . 5-86

6-1. General Message Format 6-1
6-2. Message Classes ... 6-2
6-3. Error Flag Values . 6-5
6-4. Error Result, Line/Station Format . 6-59
6-5. Result Byte Index Values . 6-59
6-6. Line Status Prior to Abort Values . 6-60
6-7. Error Result, Switched Status Format . 6-62
6-8. Switched Status Byte Values . 6-63

8600 0841-000 xix

Section 1
Declarations

This section describes the DCALGOL declarations.

DISKHEADER ARRAY Declaration
A DISKHEADER ARRAY declaration declares one or more identifiers to represent
diskheaders. Diskheaders are primarily intended for use with
Installation-Allocated Disks (lAD).

J
DISKHEADER ARRAY

L LONG J L OWN

<diskheader a~ray identifier> 1 [-<bound pair> - 1 '"""""---------4

<diskheader array identifier>

- <identifier> ----------------"""""----------i
Explanation

Diskheader arrays cannot specify an <array class> and must be
one-dimensional. Diskheader arrays can be referenced in one of the following
ways:

• Through the diskheader READ/WRITE statement

• Through a diskheader attribute

• Through the diskheader CLEAR statement

Examples

DI5KHEADER ARRAY ARAY[O:50];

OWN DISKHEADER ARRAY EXT,INT[O:20];

LONG DISKHEADER ARRAY NEXT,NOW[0:4], EVERY[O:50];

LONG OWN DI5KHEADER ARRAY UP[0:6], DOWN[O:7], 5[0:2];

8600 0841-010 1-1

I

EPILOG PROCEDURE Declaration

EPILOG PROCEDURE Declaration

1-2

The EPILOG PROCEDURE declaration allows you to designate a procedure that
must be executed before exiting the block in which the EPILOG PROCEDURE
declaration is contained. If an EPILOG PROCEDURE declaration exists for a
block, the EPILOG PROCEDURE is automatically executed before exiting the
containing block. The EPILOG PROCEDURE is not required to be invoked before
exiting the containing block. However, the program can explicitly invoke an
EPILOG PROCEDURE during execution, if desired.

- EPILOG PROCEDURE - <epilog procedure identifier> - ; - <unlabeled statement> ---4

<epilog procedure identifier>

- <identifier> --------------------------4
Explanation

The following restrictions apply to EPILOG PROCEDUREs:

• No parameters are allowed.

• No bad GO TOs are allowed. That is, any attempt to exit the procedure with a
GO TO to an outer block is flagged as a syntax error (if the compiler detects
it) or a run-time error (if the compiler did not detect it).

• An EPILOG PROCEDURE cannot return a value.

• An EPILOG PROCEDURE cannot contain an EPILOG PROCEDURE declaration.
A block or procedure cannot have more than one EPILOG PROCEDURE
declaration (or an EPILOG PROCEDURE declaration and an EXCEPTION
PROCEDURE declaration).

• An EPILOG PROCEDURE cannot be declared as a formal parameter.

• Certain restrictions are placed on programs that contain EPILOG
PROCEDURE declarations. EPILOG PROCEDUREs cannot be declared as
EXTERNAL. Only replacement binding can be used. A block or procedure
with an EPILOG PROCEDURE declaration in its outer block cannot be used as
the host code file when running BINDER. No procedure in a block that has an
EPILOG PROCEDURE can be replaced by the BINDER.

• If a program that contains one or more EPILOG PROCEDURE declarations
fails due to a fatal stack overflow, the EPILOG PROCEDURES will not be
executed.

• If the outer block (or procedure) of a program contains an EPILOG
PROCEDURE declaration and the <statistics option> is TRUE, the EPILOG
PROCEDURE is executed at block exit time before the statistics wrap-up code.

• If certain Data Management System (DMS) functions such as DATABASE
OPEN or DATABASE CLOSE are called, it might not be possible to return to
the EPILOG PROCEDURE if the executing task is discontinued.

Every procedure with critical locking code or critical block exit code of some type
should have an EPILOG PROCEDURE declaration in it. All critical block exit code

8600 0841-010

EPILOG PROCEDURE Declaration

must be contained in the EPILOG PROCEDURE~ Whenever the procedure is exited
(either normally or abnormally), the EPILOG PROCEDURE is executed.

Example

BEGIN
FILE OUT(KIND=DISK,MAXRECSIZE=14,AREASIZE=420,AREAS=5);
ARRAY A[0:13];
REAL I;
EPILOG PROCEDURE CLEANUP;
BEGIN

%IF 1=100 THEN PROGRAM TERMINATED NORMALLY
%IF 1<100 THEN PROGRAM TERMINATED ABNORMALLY
REPLACE POINTER(A) BY "LAST RECORD, 1=",1 FOR 3 DIGITS;
WRITE(OUT,14,A);
LOCK(OUT,CRUNCH);

END CLEANUP;

86000841-010 1-3

EXCEPTION PROCEDURE Declaration

EXCEPTION PROCEDURE Declaration
The EXCEPTION PROCEDURE declaration allows you to designate a procedure
that must be automatically executed by the system whenever an abnormal exit
occurs for the block in which the EXCEPTION PROCEDURE declaration is
contained.

- EXCEPTION PROCEDURE - <exception procedure identifier> - ; - <unlabeled statement> -f

<exception procedure identifier>

- <identifier> --------------------------f
Explanation

An exception procedure is invoked when the block containing it terminates in any
way other than a normal exit. It is not automatically invoked on a normal exit of
the block. Abnormal exits include the following:

• A discontinue (DS) command

• A bad branch (GO TO) leading out of the block

• A branch to a global label in the block

• Any unhandled fault

An exception procedure can be invoked directly like any other procedure; it can
be called, passed as a parameter (with limitations), and so on. The use of a
procedure as an exception procedure is allowed only to the block that contains
the procedure. A block or procedure cannot contain more than one exception
procedure declaration (or an exception procedure declaration and an epilog
procedure declaration).

The following restrictions apply to exception procedures:

• An exception procedure must be a named, untyped procedure without
parameters, and therefore cannot return a value.

• An exception procedure cannot contain parameters.

• An exception procedure cannot be specified as a formal parameter. However,
an exception procedure may be passed as an actual parameter, if the formal
parameter is an untyped procedure without parameters.

• An exception procedure cannot contain a bad GO TO statement. That is, any
attempt to exit the procedure via a GO TO to an outer block is flagged as a
syntax error (if the compiler detects it) or a run-time error (if the compiler
could not detect it).

• An exception procedure cannot contain an EXCEPTION PROCEDURE
declaration or an EPILOG PROCEDURE declaration.

• An exception procedure cannot be declared as EXTERNAL. Only replacement
binding can be used. A block or procedure with an exception procedure
declaration in its outer block cannot be bound to.

1-4 8600 0841-010

EXCEPTION PROCEDURE Declaration

Example

PROCEDURE PI;
BEGIN
REAL A, B;

FILE MYFILE (KIND=DISK);
EXCEPTION PROCEDURE CLEANUP;

BEGIN
CLOSE (MYFILE, LOCK);
END; % OF EXCEPTION PROCEDURE CLEANUP

IF MYFILE.AVAILABLE THEN
BEGIN
OPEN (MYFILE);
CLEANUP; %A DIRECT CALL TO THE EXCEPTION PROCEDURE
END;

A := 17* (B + 4);
END; % OFPROCEDUREPl. THE PROCEDURE CLEANUP WILL BE

% INVOKED AUTOMATICALLY IF WE EXIT PI ABNORMALLY.

8600 0841-000 1-5

MESSAGE and MESSAGE ARRAY Declarations

MESSAGE and MESSAGE ARRAY Declarations

1-6

A MESSAGE declaration or a MESSAGE ARRAY declaration defines one or more
identifiers as messages or message arrays and defines their dimensions and
bounds.

- MESSAGE 1 <1IIessage ld:ntifier> ~-------------------...;
<message identifier>

- <identifier> ---------------------------1

<message array declaration>

- MESSAGE ARRAY it <message arra: identifie~> 1 [-<bound pair list> - 1 ...L..----1

<message array identifier>

- <identifier> -------------------~-------I

Explanation

Essentially, messages are special forms of arrays and, with certain restrictions,
can be used in the same manner. The dimension of a message or message array
equals the number of given dimensions plus one "hidden" dimension with a lower
bound of 0, which is used to index a word in the message. This hidden dimension
is used only when working with the data inside the message. The number of
words in the message is determined by the ALLOCATE statement and can be
determined by the SIZE function.

The hidden dimension of a message can be referenced explicitly only as a specific
element and riot as a row that uses an asterisk (*) as a subscript in the low-order
position.

For example, the following is a valid statement that declares MESSAGEID to be a
message and assigns the value 1234 to word 5 in that message:

MESSAGEID[5] := 1234;

The following statement is not valid:

DCWRITE(MESSAGEID{*]);

The following statement is valid:

DCWRITE{MESSAGEID);

8600 0841-000

MESSAGE and MESSAGE ARRAY Declarations

Each designated dimension can be referenced by an asterisk (*) or an arithmetic
expression according to normal ALGOL rules. However, the hidden dimension
cannot have an asterisk.

The following example is valid:

MESSAGE ARRAY MSGARYID[O:2,O:7];
REAL REALNUM;
REALNUM := MSGARYID[1,2,3];

The following example is not valid:

ALLOCATE(MSGARYID[1,2,*],6);

The following is a correct form that would allocate one message of six words:

ALLOCATE(MSGARYID[1,2],6);

The following is a correct form that would allocate eight messages of six words
each:

ALLOCATE(MSGARYID[1,*],6);

Messages cannot be declared as formal parameters to a procedure, although a
word of a message can be passed by a value to a procedure that expects an
arithmetic actual parameter. Globally declared messages can be referenced from
within nested blocks by using normal scope rules, but not from within nested
procedures.

The application of messages is limited because they cannot be passed by name as
parameters to procedures. Therefore, with respect to procedures, messages are
explicitly local. By adhering to the defined syntax, array rows can be used
anywhere messages can be used (except in the DCWRITE function, the NULL
function, and the ALLOCATE statement). Because the entire message is copied
into the new area instead of a pointer being passed to the original message, it is
slower to use array rows than messages. However, the severe restrictions
imposed on the use of messages frequently mandate the use of array rows.

Messages are organized and maintained by a set of operating system procedures.
These procedures maintain a list of free space within the save memory pool and
allocate this space to processes requesting space by making and passing a
descriptor for an area. The procedures also accept space from processes that are
finished with an area and then add the space to the available list.

Examples

MESSAGE A,B,C;

MESSAGE ARRAY RSVP[O:5];

MESSAGE ARRAY FROM,TO[O:5], BACK,AHEAD[O:2,O:6];

8600 0841-000 1-7

MESSAGE and MESSAGE ARRAY Declarations

1-8

MESSAGE ARRAY GREETINGS[0:5,0:5];

In the following examples, the hidden dimension is referenced explicitly and
selects the word in the message:

REAL REALID;
MESSAGE MESSAGEID;
MESSAGE ARRAY MESSAGEARRAYID[O:3];
REALID := MESSAGEID[3];
REALID := MESSAGEARRAYID[2,3];
MESSAGEID[3] := 0;
MESSAGEARRAYID[2,3] := 0;
MESSAGEID[3].[4:5] := 0;

Invalid examples of the hidden dimension are as follows:

MESSAGEID := 0;

MESSAGEARRAYID[*] := 0;

You can use a message or message array element within a pointer expression.
However, you cannot assign the pointer expression to another declared pointer.
You cannot use a pointer variable to reference a message. The following
statements are valid:

REPLACE POINTER(MESSAGEID) BY POINTERID FOR 6;

REPLACE POINTERID BY POINTER(MESSAGEID[2],8) FOR COUNT;

REPLACE POINTERID BY POINTER(MESSAGEARRAYID[3],8) FOR COUNT;

The following statements show invalid usage of pointers:

REPLACE POINTERID:POINTER(MESSAGEID[3]) BY "INVALID";

POINTERID := POINTER(MESSAGEID);

A word of a message can be passed by value to a procedure that expects an
arithmetic actual parameter as shown in the following example:

PROCEDUREID (MESSAGEID[3]);

When the function causes a message to be removed, you cannot use the DCWRITE
function and the REMOVE function as part of a statement that acts on that
message.

The following examples show invalid usage of the DCWRITE function and the
REMOVE function:

8600 0841-000

MESSAGE and MESSAGE ARRAY Declarations

MESSAGEID[4] := DCWRITE(MESSAGEID);

MESSAGEID[2] := REMOVE(MESSAGEID,QUEUEID);

The following example program illustrates the basic forms of MESSAGE usage
that also apply to MESSAGE ARRAYs. This example illustrates references only
and not valid DCWRITE forms.

BEGIN
ARRAY A[0:29];
MESSAGE MSG;
POINTER MPTR;

PROCEDURE PPP(COMINGIN);
VALUE COMINGIN;

. REAL COMINGIN;
BEGIN
MESSAGE PPPMSG;
ALLOCATE(PPPMSG,10);
A[25] := COMINGIN;
COMINGIN := "HELLO [I P] • ;

% An extra real array.
% The GLOBAL MESSAGE variable.
% A pointer to the real array.

% A nested procedure with an
% arithmetic actual parameter.
%

% A locally declared MESSAGE.

BEGIN %
% From within procedure PPP:
reference from within a
nested block is permitted
for PPP's locally declared
message PPPMSG, but not
permitted for the global
message MSG.

POINTER APTR; %
PPPMSG[1] := COMINGIN; %
A[25] := PPPMSG[O]; %
DCWRITE(PPPMSG); %
END; %

END;

BEGIN % From within the scope rules
%of the outer block:

MESSAGE ARRAY INNERMSG[0:3];
ALLOCATE(MSG,30);
MPTR := POINTER(A[1],8);
MSG [1] : = 1\ * ----> II ;
A [0] : = 0 & MSG [1] [4 7 : 48] ;

% Reference from within a nested
% block to the global message
% MSG is permitted.

BEGIN % Reference from within any further
REAL AREAL; % nested blocks is also permitted
ALLOCATE(INNERMSG[1],6); % Reference to a block declared
MSG[29]. [15:16] := "00"; % message is valid.
PPP(MSG[1]); %A message element can be passed
END; % as a parameter by value.

REPLACE MPTR BY "WELCOME TO UNISYS ";
REPLACE POINTER(MSG) + 6 BY MPTR FOR 28 WORDS ; % Message used in
DCWRITE(MSG); % a pointer expression
REPLACE MPTR BY II II FOR 29 WORDS;
END;
END.

8600 0841-000 1-9

QUEUE and QUEUE ARRAY Declarations

QUEUE and QUEUE ARRAY Declarations

1-10

A QUEUE declaration or a QUEUE ARRAY declaration defines one or more
identifiers as queues or queue arrays. The QUEUE ARRAY declaration also
defines the subscript bounds of the dimensions of the queue array.

The QUEUE declaration syntax follows.

- QUEUE 1 <queue id:ntHier> --'----------------------l

,<queue identifier>

- <identi fier> ----------------------------l

The QUEUE ARRAY declaration syntax follows.

QUEUE ARRAY 11 <queue arra: i dent Hi er> '1 [-<bound pa i r li st> - 1 --'--~
<queue array identifier>

- <identifier> ----------------------------l

Explanation

A DCALGOL queue is a linked list of messages. A queue array is an indexable
array having elements that are queues, not values. A queue array is not
segmented. Queues and queue arrays can be declared as parameters to procedures
and can be passed by name only. If a procedure is invoked by a RUN statement,
queues and queue arrays cannot be passed as actual parameters.

Each queue (a simple queue or a single element ofa queue array) has a queue
reference word. If a queue is inactive, its queue reference word is a special data
descriptor (with the index bit turned on and an invalid character size field of
seven) that identifies this queue as inactive. When the queue is activated, the
special data descriptor is replaced by a stuffed indirect reference word (SIRW)
that points to a data descriptor that represents the physical queue in the
DATACOM QUEUE stack.

The DATACOM QUEUE stack is a stack reserved for DCALGOL queues and
contains a data descriptor for each active physical queue. Each such data
descriptor- addresses an array row in main memory. This array row, sometimes
called a "hidden" message, cotltains information about the physical queue such as
the number of messages in the queue, the amount of main memory used by the
queue; the number of users of the queue, and so forth. Some of this information is
available to you through the use of queue attributes.

A queue has no arithmetic properties~ You cannot assign a value to it or use it as
a value.

8600 0841-000

QUEUE and QUEUE ARRAY Declarations

Within a DCALGOL program structure, a simple queue is represented by its queue
reference word in the program working stack. A one-dimensional queue array is
represented by a data descriptor in the program working stack. This data
descriptor points to a set of queue reference words (one per queue array
element). For higher dimensional queue arrays, intermediate sets of data
descriptors are constructed. A subscripted queue (formed by subscripting a queue
array) is represented by a queue reference word accessed through one or more
data descriptors.

Queues can be passed as actual parameters to procedures by name only. When a
queue is passed by name to a procedure, the formal parameter is represented by
an SIRW that points to the original queue reference word. A queue can also be
passed as a parameter to a library procedure.

The following conditions cause a queue to be activated implicitly:

• By inserting a message or an array row into it by using the INSERT statement
or the COMBINE statement

• By using the ATTACH statement

• By invoking the DCWRITE function to direct the Data Comm Controller (DCC)
to place messages in the queue

You can explicitly activate a queue by using the QACTIVE attribute.

When a queue becomes empty, it is not deactivated. A queue automatically
becomes inactive (and its messages are removed) when no processes refer to it.

Examples

QUEUE IN;

QUEUE IN,OUT,NEXT;

QUEUE ARRAY WAITING[0:5];

QUEUE ARRAY UP,DOWN[0:3,0:2];

QUEUE ARRAY LINEUP [0 :.5], CUP, PLATE ,SPOONlO: 50 ,0: 33] ;

8600 0841-000 1-11

QUEUE ARRAY REFERENCE Declaration

QUEUE ARRAY REFERENCE Declaration

1-:-12

A QUEUE ARRAY REFERENCE is an array reference variable used only to
reference queue arrays.

- QUEUE ARRAY REFERENCE ~ <queue array ~eference i~> ~.[- <lower bounds> - 1

<queue array reference identifier>

- <identifier> ~--------------------~

Examples

QUEUE ARRAY REFERENCE ABC[3] , XYZ[5];

QUEUE ARRAY REFERENCE ARY[2*5];

8600 0841-000

Section 2
Statements

This section describes DCALGOL statements.

ALLOCATE Statement
The ALLOCATE statement causes an area of save memory <arithmetic
expression> words in length to be reserved for a message.

- ALLOCATE - (- <message group designator> - , - <arithmetic expression> -) ------l

<message group designator>

--r- <message designator>

L <message array i denti fi er> -,----------r--I

~ <subarray selector> ~
<message designator>

--r- <message designator>

L <message array identifier> -,---,---------r--I

~ <subarray selector> ~
Explanation

When a row or sub array of a message array is allocated, repeated allocations are
made for each element of the array, reserving the number of words specified by
the <arithmetic expression> for each element. If a message area referenced by a
message group designator has already been allocated,. the old message area is
returned to the system before a new area is allocated to the message group. If the
value of the arithmetic expression is less than or equal to zero, the message area,
if any, is returned to the system, making the message null. If the arithmetic
expression does not yield an integer value, it is rounded to an integer value.

Examples

ALLOCATE(MESSAGEID,SIZEINWORDS);

ALLOCATE(MESSAGEARRAYID[3],SIZEINWORDS);

ALLOCATE(MESSAGEARRAYID,SIZEINWORDS);

8600 0841-000 2-1

ATTACH Statement

ATTACH Statement

2-2

The ATTACH statement is used to attach a process to a queue.

- ATTACH - (- <new queue> - , - <old queue> -)

<new queue>

- <queue designator> -------------------------1

<old queue>

- <queue desi gnator> --------------------------1

<queue designator>

1
<queue identifier> -----------,....----------11
<queue array name> [~s~r~] ~

<queue array name>

1
<queue array identifier>

<queue array reference identifier> ~
Explanation

The A TT ACH statement creates a stuffed indirect reference word (SIRW) that
points to the head-tail word referenced by the <old queue> construct and places
the SIRW in the stack location referenced by the <new queue > construct.

The ATTACH statement activates the old queue if it is not active. If the new
queue is active, the user count of the referenced queue is decreased by one and
the new queue is made inactive (detached from the physical queue it previously
referenced). (Refer to the queue attribute QUSERCOUNT under "Queue
Attributes" in the HAttributes" section).

The ATTACH statement causes the <new queue> construct to reference the
same physical queue as the <old queue> construct, and in this way the new
queue is activated. The user count of the physical queue, referenced by both the
<new queue> and the <old queue>constructs, is increased by one.

Examples

ATTACH(QUEUEIDl,QUEUEID2);

ATTACH(QUEUEARRAYIDl[3],QUEUEARRAYID2[3]);

8600 0841-000

COMBINE Statement

COMBINE Statement
The COMBINE statement combines two separate queues by changing the head-tail
links of the queues. The messages and their links are unchanged (except for the
link of the one-ended message).

- COMBINE - (-: <host queue> - , - <secondary queue> --r-------...........
~ , - <priority> ~

<host queue>

- <queue designator> -----------------------'------t

<secondary queue>

- <queue designator> --------------------------,1

<priority>

- <Boolean expression> -------------------------1

Explanation

The COMBINE statement empties the messages in the secondary queue into the
host queue if it is active; if the host queue is not active, it is activated.

If the secondary queue is inactive, the process that is executing the COMBINE
statement is terminated unless an ON statement has enabled the
INACTIVEQUEUE interrupt. If the secondary queue is empty, nothing is
combined; however, the host queue is activated if it is inactive.

If the priority has the value FALSE or is not designated, the messages from the
secondary queue are placed at the tail of the host queue. If the priority has the
value TRUE, the messages from the secondary queue are placed at the head of
the host queue. When the queues are combined, both queues remain active, but
the secondary queue is emptied.

Examples

COMBINE(QUEUEIDl,QUEID2);

COMBINE(QUEIDl,QUEID2,TRUE);

COMBINE(RESULTQARRAY[3],SUBQUEUE,FALSE);

8600 0841-000 2-3

DCKEYIN Statement

DCKEYI N Statement

2-4

The DCKEYIN statement allows programs to send messages to the operating
system and to receive the corresponding system responses. To use this statement,
a program must be running under a privileged usercode or a systemuser usercode,
or be running as a privileged program.

- DCKEYIN -- (-- <pointer expression> -- , -- <noncharacter array row> --)

<noncharacter array row>

An array row whose identifier is declared with a <type> construct.

Explanation

The first parameter must be an EBCDIC pointer expression that points to the first
character of the message to be sent. The following rules apply to these messages:

• You can send any system command, such as PD or RES.

• You can send WFL statements that the operator could enter from the ODT,
such as RUN and REMOVE.

• You cannot send primitive commands such as ??RJ.

• The message must be terminated by one or more null characters (4"00").

• The maximum size for the message is 256 words (1536 bytes). If this size is
exceeded, the system displays an error message at runtime and terminates the
task.

The second parameter is an array row to be used by the DCKEYIN statement to
return the response to the system message. The response is a series of logical
lines each of which is terminated by a null character (4"00"). The last line of the
response is terminated by an ETX character (4"03").

The array row can have a minimum size of four words. and a maximum size of
1,048,571 words. If the array row is less than four words long, DCKEYIN does
not send the message to the system. If the array row exceeds the maximum size,
the system displays an error message at run time and terminates the task. If the
array row is too small to contain a response, the response is truncated.

All responses are truncated to 255 lines or 1,048,576 bytes, depending on
circumstances.

If the DCKEYIN statement causes the execution of a WFL job or a system
command? the WFL job or the executor of the system command does not inherit
the usercode or family substitution specification of the process that executed the
DCKEYIN statement. For example, if a task is executing with a family
substitution statement DISK = PACK ONLY, and the task uses the DCKEYIN
statement to send the command PD = ON DISK, the response will refer to the
DISK family. As another example, the statement RUN OBJECT/PROG sent
through the DCKEYIN statement starts a job without a usercode, no matter what
the usercode is of the task that called the DCKEYIN statement.

8600 0841-000

DCKEYIN Statement

The DCKEYIN statement calls the DCKEYIN procedure in the GENERALSUPPORT
system library, which performs the following actions:

• Checks the parameters and the message

• Copies the message into the noncharacter array row

• Sends the message to the system and waits for a response from the system

• Exits

The DCKEYIN procedure does not send the message to the system if it detects the
following errors:

• The pointer expression is uninitialized or is not initialized as an 8-bit pointer
expression. This error returns the response NOT EIGHT BIT POINTER.

• The first nonblank character of the message is not an EBCDIC alphanumeric
character, or is a lowercase letter. This error returns the response ILLEGAL
INITIAL CHARACTER.

A segmented array fault can occur if the message does not terminate with a null
character or if the noncharacter array row is too small to contain the copy of the
input message.

Note: The MGP uses the same mechanism to return responses to the DGKEY1N
statement and the AGGEPI' statement. Therefore, yO'U sJundd, not use both
statements in the sam,e process, because the MGP response to one of the
statements might get overwritten.

Example

This example demonstrates the use of a DCKEYIN statement to execute the
system command PD OBJECT / = ON PACK. .

Note that since the response to a DCKEYIN statement is limited to 256 lines, the
response to a PD command submitted through DCKEYIN might not show all the
files in the directory.

ARRAY SYSMSG [0:50];
ARRAY RESPONSE [0:10000];

POINTER PRj
FILE LINE (KIND • PRINTER);

ARRAY PBUF [0:22);

% INPUT SYSTEM MESSAGE
% RESPONSE FROM SYSTEM

REPLACE POINTER (SYSMSG) BY "PD OBJECT/· ON PACK", 48"00";
DCKEYIN (POINTER (SYSMSG), RESPONSE);

PR := POINTER (RESPONSE);
WHILE REAL (PR, 1) NEQ 48"03" 00 % LOOP UNTIL ETX CHARACTER

BEGIN
REPLACE POINTER (PBUF) BY II .. FOR 132;
REPLACE POINTER (PBUF) BY PR:PR FOR 132 WHILE GTR 48"03";
WRITE (LINE, 132, PBUF);
IF PR LSS 48"03" THEN % END OF LINE?

PR := PR + 1; % ADVANCE TO NEXT LINE
END;

8600 0841-010 2-5

I

Diskheader CLEAR· Statement

Diskheader CLEAR Statement

2-6

The diskheader CLEAR statement causes the diskheader array specified by
diskheader array identifier to be filled with zeros for the number of words
sp~cified by the arithmetic expression.

- CLEAR - (- <diskheader array identifier> - , - <arithmetic expression> -) --------~

Example

CLEAR(HEADER,30);

8600 0841-010

Diskheader READ/WRITE Statement

Diskheader READ/WRITE Statement
The diskheader READ/WRITE statement reads or writes a record into or out of a
diskheader array. In all forms of the diskheader READ/WRITE statement, an I/O
result word is returned and can be used as a Boolean primary for handling
exception conditions. If the I/O result word is used as a Boolean primary, action
labels or finished event cannot be used. When the diskheader READ/WRITE
statement is used as a statement, the I/O result word is discarded, and action
labels or finished event can be specified.

1
READ --r-r- <file group>

WRITE ~ L- <pointer.group> ~
<file group>

- (- <diskheader I/O file part> - , - <arithmetic expression> - , ------___ •

~ <diskheader array row>

~ <diskheader array identifier> - [- <subscript> -] ~

• l: <action labels or finished event> ~
<diskheader I/O file part>

•

- <nondirect file designator> --r---------------.,...--------i

~ <record number or carriage control> ~
<nondirect file designator>

1
<file identifier>

<switch file identifier> - [- <subscript> -] ~
<diskheader array row>

- <diskheader array identifier> ---.-----,----------------1

~[-*-]~
<pointer group>

- (- <diskheader array row> - , - <pointer expression> '-) -----------1

Explanation

The form of the diskheader READ/WRITE statement that contains a pointer
group causes an invocation of the lAD intrinsics READ HEADER or
WRITEHEADER. The second parameter in this case is always an 8-bit pointer
expression that points to a file title of the form required by the logical I/O TITLE
attribute. The indicated title is that of the file whose header is to be read or
written.

8600 0841-000 2-7

Diskheader READ/WRITE Statement

2-8

The construct READ «diskheader array row>, <pointer expression» fills the
indicated diskheader array with the header associated with the file whose title is
pointed to by the pointer expression. If the indicated file does not exist on disk,
the Boolean result of the READ construct is TRUE, which indicates an error.

The I/O result word of the READ statement signifies an error when bit 0 is
turned on and one of the following bits is turned on:

Bit

8

6

5

4

Description

A badly formed disk/pack name exists.

The file requested is not found.

The pack family requested is not present.

Short diskheader array; information has been truncated.

The construct WRITE (<diskheader array row>, <pointer expression» creates
a file with the title pointed to by the pointer expression and removes any
previously existing files of the same title. The Boolean result of the WRITE
construct is TRUE if an error is detected.

The I/O result word of the WRITE statement signifies an error when bits 9 and 0
are turned on. The row number of a bad row is identified by the value in field
[39:10]. The error is identified by the value in field [47:08]. The meanings of the
error values are as follows:

Value

o
1

2

3

4

5

7

8

9

11

12

13

Description

A bad memory disk row address exists.

The diskheader array is less than 25 words long.

A badly formed name exists.

The pack was not found.

ENTERUSERFILE failed.

A rebuild was requested, but the base pack already has an active
family.

A rebuild was requested, but an I/O error occurred.

A fault in processing the file/pack name occurred.

A fault in processing the header attributes occurred.

A rebuild was requested, but the family list was too small or too
large.

The disk pack row is not an lAD pack.

The disk pack row starts before segment 28.

continued

86000841-000

Diskheader READ/WRITE Statement

Value Description

The disk pack row extends beyond the end of the pack.

No room exists in DISKFILEHEADERS for the header.

14

15

16 The disk pack row has been marked active (allocated on a present
pack), or the memory disk row has been marked inactive.

Examples

READ(HEAD,PTR+N) [:PARITY];

READ(FID,M,HEAD) [EOF:PAR];

READ(FID [R],M,HEAD) [EOF];

READ(SWITCHFILEID[I] [R] ,M,H);

WRITE(HEAD,P);

WRITE(FID,M,HEAD) [EOF];

WRITE(FID [R],M,HEAD);

IF RESULT := WRITE(FID,M-S,HEAD) THEN GO TO DEBUGIT;

B := WRITE(H,P);

IF RESULT := READ(HEAD,PTR+N) THEN GO TO ERROR;

8600 0841-000 2-9

FLUSH Statement

FLUSH Statement

2-10

The FLUSH statement causes all messages in the queue to be discarded. The
queue remains active. Messages that have been flushed from the queue no longer
exist in the system.

- FLUSH - (- <queue designator> -) ------------------1

Explanation

If the queue designated by the <queue designator> construct is empty, the
FLUSH statement is ignored. The process executing the FLUSH statement is not
terminated if the queue designated by the <queue designator> construct is not
active.

Examples

FLUSH(QUEUEID);

FLUSH(QUEUEARRAYID[3]);

8600 0841-000

I NSERT Statement

INSERT Statement
The INSERT statement causes a message to be linked into the queue referenced
by the <queue designator>construct.

- INSERT - (- <insert source part> - , - <queue designator> -......-------.--.-..

~ , - <priority> ~
~) --~

<insert source part>

1
<message designator>

<noncharacter array row> - , - <use size> ~
<use size>

* ----~--~
1 <size>]

<size>

- <arithmeti c express; on> ---------------~---------------------I

Explanation

If the insert source part is a message designator, the message area is linked into
the queue, which leaves the message designator null.

If the insert source part is a noncharacter array row and the use size is an
asterisk (*), a message is allocated that has a length equal to the length of the
noncharacter array row. If the use size includes the <size>construct, the length
in words of the allocated message area is specified by the <size>, cosntruct.
Therefore, if the use size is declared as an asterisk, the noncharacter array row is
copied into the allocated message area; otherwise, the number of words of the
noncharacter array row specified by the <size> construct and starting with the
first word are copied. If the declared size is not greater than 0, a fatal run-time
MESSAGE SIZE ERROR results. If the size construct does not yield an integer
value, it is rounded to an integer value. The message is linked into the queue,
leaving the original noncharacter array row intact.

If the referenced queue is inactive, an implicit activation is performed on the
queue. Inserting a null message in an inactive queue makes the queue active (but
empty), while inserting a null message in an active queue is ignored.

If the priority has the value FALSE or is not designated, the message is linked to
the tail of the queue;'otherwise, the message is linked to the head of the queue.
Linking a message to the tail of a queue preserves the time order of the messages
in that queue. Linking a message to the head of the queue ensures that the
message is the next one removed from that queue, unless another message is
linked to the head in the meantime.

8600 0841-000 2-11

I NSERT Statement

2-12

Examples

INSERT(MESSAGEID,QUEUEID);

INSERT(MESSAGEID,QUEUEID,PRIORITYBIT);

INSERT(MESSAGEARRAYID[l],QUEUEARRAYID[l]);

INSERT(ARRAYID[*],3,QUEUEID);

INSERT(ARRAYID[*],*,QUEUEARRAYID[3],TRUE);

8600 0841-000

ON Statement

ON Statement
The ON statement is used to enable or disable an interrupt for one or more fault
conditions.

DCALGOL accepts the same syntax for the ON statement as ALGOL does, but
DCALGOL allows the use of the following additional fault name:

INACTIVEQUEUE

Explanation

The ON statement is documented in the A Series ALGOL Programming Reference
Manual, Volume 1: Basic Implementation. The fault that is enabled or disabled
by designating INACTIVEQUEUE i,n the fault list is an attempt to use an inactive
queue. The fault number value for INACTIVEQUEUE is 6. Refer to the "FLUSH
Statement" in this section for information on what can cause an
INACTIVEQUEUE interrupt. On ASD machines, a process can never receive an '
INACTIVEQUEUE interrupt.

Examples

ON INACTIVEQUEUE, GO TO ERROREXIT; %ENABLE INTERRUPT

ON INACTIVEQUEUE,
BEGIN
WRITE(FILEIO,.<"I AM IN TROUBLE"»;
GO TO EXITLABEL;
END;

ON INACTIVEQUEUE; %OISABLE INTERRUPT

8600 0841-000 2-13

RESIDENT Statement

RESIDENT Statement

2-14

The RESIDENT statement designates that certain data and code are to be resident
at all times in primary storage instead of being overlayed to secondary storage.

- RESIDENT - (- <Boolean expression> - , - <resident list> -) --------~

<resident list>

* ------------------~-----------------------~
<procedure i dent i fi er> -----i

<epilog procedure identifier>

<nondi rect array name> ------I

<nondi rect array row> -----~

<nondirect subscripted variable>

<truthset tdenti fi er> -----~

<t rans 1 atetab 1 e i dent i fi er> -----I

<format identifier> ------1

<switch file identifier> -----'

<nondirect array name>

1
<array identifier>

. <nondirect array reference identifier> -1
<val ue array i dent i fi er> -------------1

<nondirect array reference identifier>

An array reference identifier that is not declared to be DIRECT.

<nondirect array row>

1
<one-dimensional nondirect array name> ~

<nondirect array name> - <row selector>

<one-dimensional nondirect array name>

A nondirect array name whose identifier is declared with one dimension.

<nondirect subscripted variable>

- <nondirect array name> - [~C~i:::-=t- 1

8600 0841-000

R ESI DENT Statement

Explanation

If the Boolean expression has the value TRUE, the listed elements are made
present in primary storage and are marked as resident so that they reside in
primary storage whenever the program is active (until deallocated). If the
Boolean expression has the value FALSE, any listed elements marked as resident
are unmarked and, thereafter, are treated as normal, overlayable information.

When the resident element is an asterisk (*), the code segment that contains the
RESIDENT statement is affected.

For a procedure identifier or epilog procedure identifier, the code segment that
contains the entry point to that procedure is affected. Segments that contain
other blocks within that procedure are unaffected. Large procedures can have
their entry point in a separate stack-building segment; in this case, the segment
that contains the actual body of the procedure is unaffected.

For a nondirect array name or nondirect array row, the entire array or array row
is affected and includes all rows (if multidimensional) or segments (if segmented).

For a nondirect subscripted variable, only the row or segment that contains the
element is affected.

A truthset, translate table, format, or switch file is implemented as an array; the
appropriate identifier as a member of the resident list affects that array. Several
truthsets, translate tables, or formats can reside in the same- array.

Redundant setting or resetting of residency is ignored.

If all the requested elements cannot be made present in primary storage, the
system issues an operator message and might wait for a response.

When an item named in a resident list is deallocated by a block exit or by an
explicit DEALLOCATE statement, storage is released and residency is forgotten.
Residency is also lost if an array is resized.

Resident storage is not the same as save storage; that is, the information can be
moved from one place to another-within primary storage (or within the user's
subspace) during execution of the program. This property makes resident storage
less disruptive to the storage management algorithms because resident storage
need not contribute to "checkerboarding." However, the RESIDENT statement
must be used judiciously and sparingly if overall system performance is not to be
degraded by usurpation of resources. An appropriate use might be to keep the
critical tables and code segments resident in a real-time application.

Resident storage is reported as save storage in the CU (Core Usage) system
message.

Examples

Given appropriate declarations, the following statement retain.s the procedure
HANDLETRANSACTION and the current segment:

8600 0841-000 2-15

RESIDENT Statement

2-16

RESIDENT(TRUE,HANDLETRANSACTION,*);

Th~ following statement retains or releases (according to KEEPIT) an array and
two rows of a two-dimensional array:

RESIDENT(KEEPIT,HASHHEAD,INFO[O,*],INFO[l,*]);

The following statement releases all the rows of MATRIX and one row of NET:

RESIDENT(FALSE,MATRIX,NET[3,*]);

The following statement retains the first N segments of array WORKSPACE:

FOR I := 0 STEP 1 UNTIL N DO RESIDENT(TRUE,WORKSPACE[256*I]);

8600 0841 ~OOO

STANDARDTODISPLAY Statement

STANDARDTODISPLAY Statement

The ST ANDARDTODISPLA Y statement converts the standard form file title in the
<standard location> construct to display form and stores the result, followed by
a period (.), at the location specified by the display pointer. (Refer to the
DISPLAYTOSTANDARD Function in the "Functions" section for a description of
standard and display form file titles.)

- STANOAROTODISPLAY - (- <standard location> - , - <display pointer> -) ---~

<standard location>

<display pointer>

- <pointer identifier> -----------------------1

Explanation

The display pointer is a call-by-name pointer parameter that is left updated to
the character following the period that terminates the file title.

The compiler control option INST ALLA TION 1 must be assigned to allow the
compiler to access the required installation intrinsic.

Example

STANDARDTODISPLAY(PTRSTANDARD,PTRDISPLAY);

8600 0841-000 ·2-17

Section 3
Functions

This section describes the various DCALGOL functions.

ATTACHSPOQ Function
When used in conjunction with a DCALGOL queue, the A TTACHSPOQ function
allows a DCALGOL program to monitor much of the supervisory console message
traffic. You must be a privileged user to use this function.

- ATIACHSPOQ - (- <queue designator'> -) ----------------1
Explanation

The queue designator is the destination for copies of various console-related
messages. The queue designator must designate an inactive DCALGOL queue. If
the queue is successfully attached, the Boolean function returns the value TRUE.
Furthermore, copies of messages generated by the procedure M~ER, messages
sent to the CONTROLLER, and CONTROLLER responses are inserted in the queue
designated by the <queue designator> construct and can be removed in the
normal way. After it is attached for console-related messages, the queue can be
detached only by exiting the block in which that queue is declared.

If the queue is already activated or if another queue is attached to receive
console messages, the invocation of the A TTACHSPOQ function is unsuccessful,
the value returned is FALSE, and the state of the indicated queue is unaffected.

Messages are received as EBCDIC characters starting in word 1. Word 0 of the
message contains the time of day in 2.4-microsecond units. Messages can contain
nonprinting characters that are used to control the console unit.

Examples

IF ATTACHSPOQ(QUEUEIDENTIFIER) THEN
GO TO SUCCESSFUL

ELSE
GO TO UNSUCCESSFUL;

IF ATTACHSPOQ(QUEUEID[4]) EQV BOO THEN
GO TO EXPECTED;

8600 0841-010 3-1

CHECKGUARDFILE Function

CHECKGUARDFILE Function

3-2

The CHECKGUARDFILE function checks access privileges based on whether the
CHECKDECLARER option of the SECOPT (Security Options) system command is
TRUE or FALSE. For information on the CHECKDECLARER option, refer to the
A Series Security Administration Guide. You should be familiar with the
security checking scheme of this option before you invoke the
CHECKGUARDFILE function.

- CHECKGUARDFILE - (- <pointer expression> -) -------------t
Explanation

The pointer expression is passed by value and must point to a file title of a
guardfile. This title must be in display format, including any ON <familyname>
clause. In addition, you must enter the complete file title, which includes the
usercode. The system does not apply family substitution or usercode inheritance
to search for the guard file.

The function returns a Boolean value. If all bits of the result are equal to 1, the
guardfile is not available. Otherwise, the result is interpreted as two masks. The
first mask describes actions relevant to files in general. The second mask
describes actions relevant only to databases. If a particular bit in the first mask
is turned on, access to the action associated with that bit is denied. If a particular
bit in the second mask is turned on, access to the action associated with that bit
is allowed.

The following bits describe actions relevant to files in general:

Bit

o
1

2

41

Description

Write access

Read access

Execute access

Writing to a file opened EXTEND
(as defined by the ANSI74 COBOL
standard) .

The following bits describe actions relevant only to databases:

Bit

4

5

6

Description

FIND

LOCK

OPEN INQUIRY

continued

8600 0841-010

CHECKGUARDFILE Function

Bit Description

7 SECURE

16 ASSIGN

17 CREATESTORE

18 DELETE

19 GENERATE

20 INSERT

21 LOCKSTORE

22 REMOVE

23 OPEN UPDATE

32 CLOSELOCK

33 OPEN INITIALIZE

34 OPEN TEMPORARY

Examples

RSLT := CHECKGUARDFILE(PTRTOGUARDFILE);

IF REAL{CHECKGUARDFILE(USERGUARD» IS REAL(NOT FALSE) THEN.

8600 0841-010 3-3

CONTROLCARD Function

CONTROLCARD Function

3-4

The CONTROLCARD function provides a mechanism for a process to initiate the
Work Flow Language (WFL) compiler and to pass input records in the input
originator.

- CONTROLCARD - (- <input designator> - , - <arithmetic expression> -) -----I

<input designator>

<nondirect file designator> -----------,-------------1:
<queue desi gnator> --------------1
<one-dimensional real array identifier> -----t
<one-dimensional real array reference identifier> -

<real array identifier> - <row selector> -----1

<real array reference identifier> - <row selector> -

<one-dimensional real array identifier>

An array identifier that is declared of type REAL and with one dimension.

<one-dimensional real array reference identifier>

An array reference identifier that is declared of type REAL and with one
dimension.

<real array identifier>

An array identifier that is declared of type REAL.

<real array reference identifier>

An array reference identifier that is declared of type REAL.

Explanation

The values and meanings associated with the arithmetic expression parameter are
as follows:

Field

[46:01]

[44:01]

[39:01]

Description

The originating MCS receives task and job messages (if FALSE). Before
messages can be returned in this field, values must be assigned to the
SOURCESTATION task attribute fields.

This is a START command (if TRUE).

If run through a data comm terminal, messages are returned (if TRUE).

continued

8600 0841-010

CONTROLCARD Function

Field

[38:01]

Description

For request type 4 only. If TRUE, the WFL job runs as a dependent
process before the controlcard function returns control to the originating
task. If FALSE (or the request type is not equal to 4), the WFL job is
initiated as an independent process.

[34:01] If TRUE, this job is compiled for syntax checking only. This field overrides
the disposition in the job.

[15:08]

[07:08]

This field contains the character to be used as the invalid character. If
the field is 4"00", a question mark (?) is assumed.

Request type 3 is ZiPped WITH file. Request type 4 is ZIPped WITH
array. Request type 7 is ZIPped WITH queue.

If request type 7 is used, control does not pass from the function until the
following is encountered as an insert in the queue:

<invalid character> END JOB.

For this reason, a procedure that contains the function should be processed
asynchronously.

Bit 0 of the TASKVALUE of any process calling the CONTROLCARD function is
given the value 1 if the WFL compilation had syntax errors and is given the value
o if no errors occurred. A task can test BOOLEAN(MYSELF.TASKVALUE) after
the task calls the CONTROLCARD function to determine if any WFL syntax
errors occurred.

WFL Card Image (Variant = 1)

The message is passed to the WFL compiler with a DCALGOL queue that has been
used as the input designator in a CONTROLCARD function that uses the following
construct:

INSERT«message designator>, <queue designator»;

The format of this message is as follows:

Word

o

8600 0841-010

Field

[47:08]

[39:08]

Value

21

1

Description

Type.

Variant.

continued

3-5

I

CONTROLCARD Function

3-6

Word Field

[23:24]

1

2 to end

Examples

Value Description

Logical Station Number (LSN) of the remote
terminal.

Number of card images in the message.

Card image text in EBCDIC with each card
image preceded by an 8-bit length byte. Bit
[07:01] of this length byte is turned on if the
first character of the card is invalid and if field
[06:07] of the byte contains the length of the
card image in units of characters.

CONTROLCARD(ARAY[*],4 & 1 [39:1] & 1 [38:1]);

CONTROLCARD(AFILE,3 & COMPOK [38:6:1]);

B := CONTROLCARD(QUEUETOG,NUMBER);

8600 0841-010

COpy Function

COpy Function
The COPY function allows convenient and efficient movement of data from disk
location to disk location within an Installation-Allocated Disk (lAD). The real
value returned by the COPY function is 0 if no errors occur. If an error does
occur, the real result is the address of the block on which the error occurred;
additionally, the number of segments is updated to contain the number of
segments remaining to be copied. The <number of segments> parameter is
passed by name; the other five parameters are passed by value and are real.

- COpy - (- <source uni t number> - t - <source address> - t --------___ •

.- <destination unit number> - t - <destination address> - t - <number of segments> --.

.- , - <number of segments per block> -) -------------------4

<source unit number>

- <arithmeti c expressi on> -------------------------4

<source address>

<destination unit number>

<destination address>

<number of segments>

- <single-precision arithmetic variable> ----------------~

<single-precision arithmetic variable>

An arithmetic variable whose identifier is declared of type INTEGER or REAL.

<number of segments per block>

Explanation

The <source unit number> parameter designates the unit that contains the data
to be copied. The <source address> parameter designates the base address
(exclusive of unit number) from which data is to be copied. The <destination
unit number> parameter designates the unit to which the data is to be
transferred. The <destination address> parameter designates the base address
(exclusive of unit number) to which data is to be copied. The <number of

8600 0841-000 3-7

COpy Function

3-8

segments per block> parameter designates the number of segments per block to
be used in doing the physical data transfer.

When the COpy function is invoked, it transfers the number of segments
specified by the <number of segments> construct from the physical disk
location specified by the source address to that specified by the destination
address (using the block size specified in the <number of segments per block>
construct) until either the number of segments to be copied is exhausted or an
error occurs.

If the specified number of segments per block is greater than 1 and an error
occurs, the calling progra.m must search the block in order to isolate the
particular segment in error. This search is necessary because the address
returned is a block address rather than a segment address.

The following example illustrates the basic copy mechanism:

N := 1000;
WHILE COPV(SEU,S,DEU,D,N,lOO) NEQ 0 DO;

This example copies 1000 segments from SED to DED starting at S + 900,
S + 800, S + 700, ... and going to D + 900, D + 800, D + 700, ... ,
respectively. Data is copied in descending order to minimize disk latency time.

Disk files in an lAD are treated identically to those resident in a disk managed by
the operating system, with the following exceptions:

• The operating system does not allocate disk to any file in an lAD. Therefore,
a program that writes serially into a file and encounters an unassigned disk
receives an end of file (EOF) action rather than to automatically obtain that
disk area.

• When an lAD file is removed, the only disk released to the system is that
associated with its directory entry and header.

Examples

COPV(SOURCEEU,SOURCEADDRESS,DESTINATIONEU,
DESTINATIONADDRESS,SEGMENTS,BLOCKSIZE);

WHILE COPV(SEU,S,DEU,D,N,lOO) NEQ 0 DO;

8600 0841-000

DCERRANAL YSIS Function

DCERRANAL YSIS Function
The DCERRANALYSIS function allows an MCS to interpret error result messages
in the form of English text. This function can be used only in a data comm
environment that is initialized at the time of the use of this function. Only an
MCS that previously initialized a primary queue can use this function. The reason
for this restriction is that the DCERRANALYSIS function uses an INTERROGATE
STATION ENVIRONMENT DCWRITE.

- DCERRANALYSIS - (- <single-precision array row> - , - <pointer expression> - , ---.

~ <Boolean expression> -) -----------------------1

<single-precision array row>

An array row whose identifier is declared to be of type INTEGER or REAL.

Explanation

The first parameter is a single-precision array row that contains the error result
message (six words). The second parameter is a pointer into an array where the
text that results from the analysis of the error result message can be stored. The
third parameter is a Boolean expression that indicates the request for complete
analysis of the error result message (additional information such as NDLII flags
and the original DCWRITE type). The Boolean result returned by the
DCERRANALYSIS function contains the following information:

Field

[23:16]

[03:01]

[02:01]

[01:01]

[00:01]

Description

Character count field

Error message invalid

Error message array too small

Text array too small

Analysis unsuccessful

A successful analysis of an error result message returns a result with bit 0 equal
to FALSE and the length of the text (in number of characters) stored in the
character count field.

If the function is unable to successfully analyze an error result message (bit 0
equals TRUE in the result), the reason is given in bits 1 through 3. Bit 1 is TRUE
if the array referenced by the pointer expression was too small to hold the
analyzed text. Bit 2 is TRUE if the single-precision array row is less than six
words long. Bit 3 is TRUE "if the content of the error result message was
contradictory or did not make sense (in this case, a brief indication of the nature
of the difficulty encountered can still be stored as text and its length indicated by
the character count field).

8600 0841-000 3-9

DCERRANAL YSIS Function

3-10

The text returned is divided into four parts in the following order:

1. The time of day the error occurred according to the data communications
controller (DCC) timestamp.

2. The station name followed by the logical station number (LSN) in
parentheses.

3. A description and diagnosis of the error.

4. Additional information, if the value of the Boolean expression is TRUE.

Contiguous entities in parts 3 and 4 are separated by semicolons.

An example of an error result message is as follows:

630000 OOOOOA 010004 100010 000000 000000 380E04 000000
000000 210000 000000 000000

Analysis of this error result message yields the following:

17:00:30 T01314KV(10) TERMINATE ERROR: LASTFLAG=OISCONNECT,
FLAGS=STATION/LINE NOT ROY;

If a complete analysis is requested, the text r~turned would be as follows:

17:00:30 T01314KV(10) TERMINATE ERROR: LASTFLAG=OISCONNECT,
FLAGS=STATION/LINE NOT ROY; LINE:NOT BUSY,REAOY, TOGS: 0=0 1=0;
OCWRITE TYPE=ENABLE INPUT ON STATION

Example

IF NOT RSLT := OCERRANALYSIS(ERRMSG,PTR,FALSE) THEN

8600 0841-000

DCERRORLOGGER Function

DCERRORLOGGER Function
The DCERRORLOGGER function allows an MCS to' log data comm errors.

- DCERRORLOGGER - (- <message group designator> - , - <size> -) --------1

Explanation

The contents designated by the <message group designator> construct are
entered in the system log for the number of words designated by the <size>
parameter, prefixed by a 4-word header. If the <size> parameter does not yield
an integer value, it is rounded to an integer value. The MAJOR type assigned to
this entry is 5, which is the network support processor (NSP) maintenance
record. The MINOR type has the value 4, which is the MCS result message record.

If the given log record cannot be entered in the system log, the
DCERRORLOGGER function returns a negative result indicating the specific
reason that the request was denied. The values returned by the
DCERRORLOGGER function are as follows:

Value Description

o The log entry was made successfully.

-1 The <size> parameter was greater than the true size of the message group
designated.

-2 The caller is not a valid MCS or has not initialized the primary queue.

-3 A disk error occurred during an attempt to log the entry.

Examples

R := DCERRORLOGGER(MA[*],6);

DCERRORLOGGER(MA,4);

8600 0841-000 3-11

DCSYSTEMTABLES Function

DCSYSTEMTABLES Function

3-12

The DCSYSTEMTABLES function enables an ALGOL or DCALGOL program to
obtain information about the current data comm environment. The
DCSYSTEMT ABLES function has a real value.

- DCSYSTEMTABLES - (- <arithmetic expression> - , - <noncharacter .array row> -) ----i

Explanation

The information selected by the arithmetic expression is copied into the
non character array row. If the value of the arithmetic expression is 3, 4, or 7,
then the noncharacter array row is resized to contain the requested information;
the previous contents of the noncharacter array row are lost. For all other values
of arithmetic expression, the non character array row is resized only if the size of
the array is insufficient for the information to be returned.

The information selected when the value of the arithmetic expression is 0, 1,2, or
4 is intended for use only by Unisys system software, and is subject to change.

The noncharacter array row is referred to in the following tables as NCAR. The
information selected by the arithmetic expression is as follows:

Value Description

o DCC tables.

1 NSP tables.

2 DCC station table

3 General information:

NCAR[O]:

NCAR[I]
through
NCAR[3]:

NCAR[4]:

NCAR[5]:

Specifies the bit mask of initialized NSPs. For example, if
NCAR[0].[03:01]= 1, then relative NSP 3 has been initialized.

Specify the DC file prefix, terminated by a period.

Specifies the bit mask of online NSPs.

Specifies the bit mask of NSPs configured in the DATACOMINFO
file.

4 DATACOMINFO file station record.

6 Provides interpretive text for DCWRITE errors. NCAR[O] contains the DCWRITE
error number as an integer. On return, the function value is 0 if no errors
occurred. The first word of the array contains the text length in characters; the
second and subsequent words contain an EBCDIC text string, followed by a null
character. If the NCAR contains fewer than 20 words, it is resized.

continued

8600 0841-000

DCSYSTEM TABLES Function

Value Description

8600 0841-000

7 If the first word of the array parameter contains 0:

Provides the NSP and line support processor (LSP) hardware unit numbers for the
entire network. The format of €ach word of the returned array is as follows:

[47:16]

[31:16]

[15:01]

[14:07]

[07:04]

[03:04]

The NSP hardware unit number.

The LSP hardware unit number.

If 1, and automatic initialization of the NSP is required, the
operating system automatically initializes the NSP. If 0, the
operating system encountered an error while communicating with
the NSP, and the NSP is not automatically initialized.

The relative number of the NSP.

The relative number of the LSP.

Always O.

If the first word of the array parameter is other than 0:

Provides the NSP and LSP hardware unit numbers for a specific DLS number
designated by the value in the first word of the array parameter. The DLS number
is made up of three components, which are separated by colons (:). The first
component is the relative network support processor number (previously known
as the data communic,ations processor number). The second component is the
line number. The third component is the relative station number.

The array row is resized, if necessary, to hold the information for all the LSPs on
the network (one word per LSP). The format of the first word of the returned
array row is as follows

[47:16]

[31:16]

[15:16]

The NSP hardware unit number.

The LSP hardware unit number, unless the relative LSP number
submitted in the DLS number does not correspond to an LSP on
that NSP, in which case this field is O.

The DL part of the DLS number as given in the request (in field
[23:16]). If the NSP is not available, the DLS bit (in field [15:01]) is
changed to O~

3-13

DCSYSTEM TABLES Function

3-14

When information is successfully obtained, the DCSYSTEMTABLES function
returns a real value in the following format:

Field

[39:20]

Description

Size (in words) of the NCAR parameter after it is resized by the
DCSYSTEMTABLES function if applicable; otherwise, O.

[19:20] Memory address of the table specified by the <arithmetic expression>
parameter if applicable; otherwise, O.

If the information is not successfully obtained, the value returned by the function is
negative; that is, it contains a 1 in bit 46 and one of the following values in field
[19:20]. Each value indicates a reason the information was not obtained.

Value Error Description

1 Data comm is not running, and the arithmetic expression is not equal to 3
or 6.

2 The value of the arithmetic expression is not valid input to the function.

3 An invalid LSN occurs in NCAR[O] (arithmetic expression equal to 4).

4 An invalid name occurs in NCAR (arithmetic expression equal to 4).

5 An unknown station exists (arithmetic expression equal to 4).

6 The relative NSP number is invalid.

7 No line information is available.

8 An invalid DLS number is designated.

11 A fault occurred while processing the request.

13 The information requested requires an array that is too large to be resized.
The required size of the array is returned in field [39:20]. The request can be
retried by using a segmented array of the indicated size for the NCAR
parameter.

20 A disk error occurred while accessing the data comm files.

When the arithmetic expression is equal to 4, you must designate the desired
station either by placing the station name in EBCDIC starting in NCAR[O] or by
designating the station LSN in NCAR[O].

Example

T := DCSYSTEMTABLES(3,A[I,*]);

86000841-020

DCWRITE Function

DCWRITE Function

The DCWRITE function causes the message specified by the message designator
to be passed to the data communications controller (DCC). The action taken by
the DCC depends on the type and variant fields of the message. For detailed
information, refer to the "DCWRITE Information" section.

- DCWRITE - (- <message designator> --..,.---------~

~ , - <queue designator> ~
Explanation

The queue designator is required for certain DCC actions. The value returned is
an error identification number. A zero indicates no error; other error values are
given in the "DCWRITE Information" section.

A stack that is not marked as an MCS can call the DCWRITE function, provided
that the procedure that calls the DCWRITE function is declared in a stack marked
as an MCS.

Examples

ERRORNO := DCWRITE(MESSAGEID);

ERRORNO := DCWRITE(MESSAGEARRAYID[3],QUEUEID);

8600 0841-000 3-15

DISPLAYTOSTANDARD Function

DISPLAYTOSTANDARD Function

3-16

The DISPLA YTOSTANDARD function is a Boolean function that conver~s a
display form file title to standard form.

- DISPLAYTOSTANDARD - (- <display location> - , - <standard location> -) -----I

<display location>

- <poi nter expression> -------------------------1

Explanation

A display form file title contains one or more identifiers separated by slashes and
can include a usercode in parentheses, an asterisk (*), or an ON <familyname>
clause .. The following string is a display form file title that includes both a
usercode and an ON <familyname> clause: '

"(SMITH)REPORT/JULY ON ACCOUNTS"

A standard form file title, used internally by the operating system, has the
following form:

- <total length> - <qualification> - <number of identifiers> ---------...

~13\

~ <id length> - <identifier> --.L-,---------------------i

The <total length> parameter is an 8-bit binary number that represents the total
length in bytes of the standard form file title and includes the <total length>
parameter byte itself.

A qualification is a formatted, 8-bit byte that contains the following fields:

Field Value

[06:01]

[02:01]

[01:02]

1

2

3

Description

A name in the display form title was originally surrounded
by quotation marks because it contained hyphens or
underscores.

Family name included. If this field is 1, the last identifier
represents the familyname in the ON <familyname>
clause. If this field is 0, no familyname is present.

Usercode information. This field contains information
about the presence of an asterisk (*) or a usercode. The
possible values returned have the following meanings:

The display form title is not preceded by an asterisk or
usercode.

The display form title is preceded by an asterisk.

The display form title is preceded by a usercode.

8600 0841-000·

DISPLAYTOSTANDARD Function

The <number of identifiers> parameter is an 8-bit binary number that
represents the total number of identifiers in the file title.

The <id length> parameter specifies the length, in bytes, of the identifier that
immediately follows it.

The identifier is a usercode, a familyname, or one level of the file title. In the file
title CSMITH)REPORT / JULY ON ACCOUNTS, four identifiers are included:
SMITH, REPORT, JULY, and ACCOUNTS. The DISPLAYTOSTANDARD function
disallows blanks embedded within an identifier and ignores nonembedded blanks.
A familyname must contain only uppercase alphanumeric characters. An
identifier that represents one level of the ille title or a usercode can include
hyphens and underscores without quotes. If other nonalphanumeric characters or
lowercase characters are included, quotes are required. All identifiers and
usercodes that are longer than 17 characters are truncated. If truncation occurs,
the system issues a warning message and sets the warning bit [11: 1].

A display form file title must end with a period C.).

The result space in the array that follows the destination pointer and contains
the resulting file title must be at least 255 characters long.

You must assign the compiler control option INSTALLATION 1 to allow the
compiler to access the required installation intrinsic.

The DISPLA YTOST ANDARD function returns a Boolean result that is FALSE if
no errors occur during the conversion. Otherwise, it returns the Boolean result
TRUE. If TRUE, bit 0 of the result is 1, and one of the following bits also has the
value 1 to identify the error:

86000841-010

Bit Description

47 A fault occurred while scanning the display form title.

11 More than 17 characters occurred in a name node.

10 A name node was expected between slashes, or either a name or an equal
sign was expected following the final slash.

9 More than 12 nodes occurred in the name portion of the file name.

S A slash was expected between successive identifiers.

7 A usercode was expected after the left parenthesis.

6 No identifiers were found.

S A nonalphanumeric character was found in the familyname.

4 The file title did not terminate with a period.

3 An identifier that contains a nonalphanumeric character was not enclosed in
quotation marks.

continued

3-17

DISPLAYTOSTANDARD Function

3-18

Bit Description

2 A null quoted string is illegal as an identifier.

1 A right parenthesis was expected after the usercode.

Example

ERRORFLAG := DISPLAYTOSTANDARD(PTRDISPLAY,PTRSTANDARD);

The following example shows how the file title (SMITH)REPORT/JULY ON
ACCOUNTS would appear in a program dump in standard form.

1E 07 04

105TT 0 Tfl
S MIT H

Length in bytes of identifier, SMITH
Number of identifiers

Qualification byte
Length in bytes of file title in standard form, including this byte

fl04

T 0 TTT
T J U L Y

Length in bytes of identifier, JULY

rfT
o a

P 0 R R E

Length in bytes of identifier, REPORT

lOSf T 0 TTT TTT
AC COU NTS

Length in bytes of identifier, ACCOUNTS

8600 0841-010

GETSTATUS Function

GETSTATUS Function
The GETSTATUS function gathers designated system information and places it in
the noncharacter array row.

- GETSTATUS - (- <arithmetic expression> - , - <arithmetic expression> - , •

.- <arithmetic expression> - , - <noncharacter array row> -) I

Explanation

The information that you supply through four parameters designates the
information that is to be returned by the program. The' parameters, their values,
and the information returned are described in the A Series GETSTATUS/
SETSTATUS Programming Reference Manual.

Example

BOOl := GETSTATUS(TYPE,SUBClASS,MASK,ARRAYROW);

8600 0841-000 3-19

MAKEUSERCODE Function

MAKEUSERCODE Function

3-20

The MAKEUSERCODE function uses the data in the noncharacter array row
parameter to create a usercode or to create a usercode and a password. The

\
Boolean value returned by the MAKEUSERCODE function is TRUE if the
designated usercode (and password, if designated) is created; otherwise, it is
FALSE.

If a security administrator is authorized at your site, only a process running
under the security administrator usercode can use the MAKEUSERCODE function;
otherwise, only a process with privileged-user status can use this function.

You cannot use the MAKEUSERCODE function on a password-generating system.

- MAKEUSERCODE - (- <noncharacterarray row> -) --------------1
Explanation

The data in the noncharacter array row must have the following structure:

• The data must consist of an EBCDIC character string.

• The data must be in one of the three following forms:

<usercode>
<usercode> / <password>
«usercode»<password>

• The data must terminate with a period.

• Leading blanks, trailing blanks, and blanks separating pairs of items in the
case of usercode and password are acceptable.

• The usercode and password can be 17 or fewer characters, which exclude
quotation marks when the usercode or password is enclosed in quotation
marks.

• Blanks are significant inside a usercode or a password that is enclosed in
quotation marks.

• Any of the 256 EBCDIC characters can be used (except the quotation marks)
inside a usercode or password that is enclosed in quotation marks.

• If the usercode is ELEPHANT and the password is BIG-ONE, then anyone of
the following REPLACE statements is appropriate to fill the noncharacter
array row:

P := POINTER (ARRAYID);
REPLACE P BY "ELEPHANT r," "BIG-ONE"," ".";
REPLACE P BY "ELEPHANT/IIIIIIBIG-ONEIIIIII.";
REPLACE P BY "ELEPHANT/II II IIBIG-ONE" " II.";

8600 0841-000

Examples

IF MAKEUSERCODE(A[*]} THEN GO TO NEXTONE;

MAKEUSERCODE(ARRAYID};

8600 0841-000

MAKEUSERCODE Function

3-21

MCSLOGGER Function

MCSLOGGER Function

3-22

The MCSLOGGER function allows an MCS to make entries into the system log
primarily for the purpose of billing and monitoring station users. The
noncharacter array row contains the information to be logged. The array format
is a general log array format used by all logging functions and is described in the
"SUMLOG" section in the A Series System Software Support Reference Manual.

- MCSLOGGER - (- <noncharacter array row> -) -------------:-----t
Explanation

With the exception of log-on entries, the contents of the passed array are not
modified and the first word of the noncharacter array row must contain a valid
job number.

For log on, the MCSLOGGER function returns a unique job number in the first
word of the noncharacter array row. This job number must be used for all future
logging for this user.

If the given entry could not be entered in the log, the MCSLOGGER function
returns a negative result to indicate the specific reason that the request was
denied. The MCSLOGGER function returns the following values:

Value Description

o The entry was logged successfully.

-1 Either the noncharacter array row is too small to contain the information
(length fields in link words were in error) or the information required more
than 256 words.

-2 The caller is not a valid MCS or has not initialized its primary queue.

-3 A disk parity error occurred while the system was entering the records in the
log.

-4 Either the MAJOR type of entry was not 4 (MCS record), o~ the MINOR type
was invalid (less than or equal to 0 or greater than 4).

-5 The entry was not logged on, and the first word of the array did not contain
a valid job number.

-6 A job file cannot be made.

-7 . The fixed part of the log entry was too small for the entry type.

-8 There were bad links pointing outside the variable part of the log entry.

Examples

MCSLOGGER{TEXT[A,B,*]);
RESULT := MCSLOGGER{JOBINFO[J,*]);
MCSLOGGER{BIGARRAY);

8600 0841-000

NULL Function

NULL Function
The NULL function returns a Boolean value of TRUE if the message designator
does not have any allocated area or if the queue designator has not been
activated. Otherwise, it returns a value of FALSE.

- NULL - (--r- <message designator> -r-)
L- <queue designator> ~

Examples

BOOLEANID := NULL(MESSAGEID);

BOOLEANID := NULL(MESSAGEARRAYID[3]);

BOOLEANID := NULL(QUEUEARRAYID[3]);

BOOLEANID := NULL(QUEUEID);

8600 0841-000 3-23

QUEUEINFO Function

QUEUEINFO Function

3-24

The QUEUEINFO function returns an integer value in response to the information
requested about the que~e designator by the second parameter, <arithmetic
expression> .

- QUEUEINFO - (- <queue designator> - , - <arithmetic expression> -) ------1

Explanation

The values that are used in the arithmetic expression and the meanings of these
values are as follows:

Value Description

-1 Returns 0 and causes a memory dump.

o Returns O.

1 Returns the number of messages in the queue.

2 Returns the number of processes attached to the queue.

3 Returns the size, in words, of the message at the head of the queue.

4 Returns the total number of words being used by all the messages in the
queue.

All other values return -1.

A value of 3 (the size of the message at the head of the queue) should not be used
to determine if truncation will occur with a remove to a noncharacter array row
(or with any similar function) unless care is taken to ensure that no other
processes could possibly remove that message between the time the size is
checked and the time the message is removed.

ANSWER := QUEUEINFO{QUEUEID,l};

ANSWER := QUEUEINFO(QUEUEARRAYID[3],NUMBER};

8600 0841-000

REMOVE Function

REMOVE Function
The REMOVE function takes the message at the head of the queue, delinks it
from; that queue, and either inserts a descriptor that points to that message in the
stack location referenced by the message designator or copies the message into
the designated noncharacter array row. The value returned by the REMOVE
function is the length of the message, in words.

Because the queue must be active to remove a message from it, be careful when
you remove a message from a queue. If doubt exists, perform a test with the
NULL function (refer to the "NULL Function" in this section). If you attempt to
remove a message from an inactive queue, a run-time error occurs and
IN ACTIVEQUEUE terminates the process unless an enabled ON statement exists
for this fault.

- REMOVE - (~ <message designator> -----y- , - <queue designator> -)

~ <noncharacter array row> ~

Explanation

The REMOVE function delinks a message from the specified queue and causes the
message to be either referenced by the message designator or copied into the
noncharacter array row. If the latter occurs, the message area is returned to the
system. A value of 0 is returned if no messages are in the queue. Otherwise, the
length (in words) of the message removed is returned. If the message designator
already references a message, that message area is returned to the system before
the removal. If the noncharacter array row is smaller than the message removed,
the message is truncated and the length of the noncharacter array row is
returned. If the queue designator is not active, the program is terminated unless
an ON statement has enabled the INACTIVEQUEUE interrupt.

Examples

MESSAGESIZE := REMOVE(MESSAGEID,QUEUEID);

MESSAGESIZE := REMOVE(MESSAGEARRAYID[l],
QUEUEARRAYID[l]);

MESSAGESIZE := REMOVE(ARRAYID[*],QUEUEID);

8600 0841-000 3-25

SETSTATUS Function

SETSTATUS Function

3-26

The SETST ATUS function controls a variety of operating system functions. The
user is notified of invalid applications of the SETST A TUS function by error
information coded into certain fields of the noncharacter array row. The required
parameters, their values, and the information returned are described in the
A Series GETSTATUS/ SETSTATUS Programming Reference Manual.

- SETSTATUS - (- <arithmetic expression> - , - <arithmetic expression> - , -------.

~ <arithmetic expression> - , ,....·<noncharacter array row> -) ----------11

Example

~BOOl := sETSTATUS (TYPE ,SUBTYPE ,VAl,ARRAYROW) ;

8600 0841-000

SETU PI NTERCOM Function

SETUPINTERCOM Function

The SETUPINTERCOM function allows an MCS to communicate with other MCSs
or with the CONTROLLER. A message is sent to MCS number N by inserting a
message in queue array reference identifier[N]. Received messages are found in
the queue specified by the queue designator. The CONTROLLER implicitly has an
MCS number of O.

- SETUPINTERCOM - (- <queue array reference identifier> - , - <queue designator> ----.

• L J) , - MLSCAPABLE

, Explanation

The SETUPINTERCOM function also allows an MCS to specify whether or not it
is able to display messages sent by the operating system in multiple languages.
Use the optional third parameter MLSCAP ABLE to indicate this capability.
"MLS" stands for multilingual system. The third parameter is a Type 2 reserved
word.

If you include the MLSCAP ABLE parameter, the operating system sends messages
to the MCS in the format of message number and message parameters, if there are
any. Because such a message is not in displayable form, the MCS should call the
operating system procedure MCPMESSAGESEARCHER to format and translate
the message, in the format described in "MESSAGE FROM CONTROLLER RESULT
(Class=21)" in the "MCS Result Message Formats" section. For more information
on the MultiLingual System, refer to the A Series MultiLingual System (MLS)
Administration, Operations, and Programming Guide.

If you do not include the MLSCAP ABLE parameter, no special handling is done,
and the operating system sends translated and formatted messages to the MCS as
described in "MESSAGE FROM CONTROLLER 'RESULT (Class=21)" in the "MeS
Result Message Formats" section.

If the request could not be completed, the SETUPINTERCOM function returns a
negative result to indicate the specific reason for denying the request. The values
returned by the SETUPINTERCOM function and their respective meanings are as
follows:

Value

N>O

-1

-2

8600 0841-000

Description

The request completed without error. N is the MCS number of the program
invoking this function. '

The requesting program has not initialized its primary queue.

The <queue designator> parameter is already established as an intercom
queue.

3-27

SETUPINTERCOM Function

Word

o

3-28

The information that follows describes the interface message that uses the
SETUPINTERCOM function to establish the communication link with the
CONTROLLER.

You can cause a DCALGOL queue to pass to the operating system the designated
message and the one that follows it by using the following construct:

INSERT«message designator>,INTERCOMQUEUES[O]);

In the above construct, INTERCOMQUEUES is a queue array reference identifier.
Before inserting a message in element 0 (the input queue of the CONTROLLER),
you must establish the communication links by using the following DCALGOL
construct:

SETUPINTERCOM(INTERCOMQUEUES,MYINPUTQ);

You can use one of two formats to send the message to the CONTROLLER:

• Format 1, which you use if you do not include the MLSCAPABLE parameter,
or if you do not want to use the message attributes available in format 2.
Format 1 is shown in Table 3-1.

• Format 2, which you use if you do include the MLSCAP ABLE parameter, or if
you want to use message attributes. Format 2 is shown in Table 3-2.

Table 3-1. Format 1 for SETUPINTERCOM Function Messages

Field

[47:08]

[39:01]

[38:07]

Value

21

o

2'

Description

Type.

Using format 1.

Variant field, as follows. Variants 7, 8, 9, and 10 are
used only by Operator Display Terminal
(ODT)-simulating MCSs:

Input request to the CONTROLLER for processing the
message.

4 Request to the CONTROLLER to continue with the
earlier request.

6 Request to the CONTROLLER for connection to
become an ODT-simulating MCS. Words 1, 2, 3, and 4
must have all bits equal to 1.

7 For an ODT-simulating MCS: request to the
CONTROLLER for disconnection. Words 1, 2, 3, and 4
must have all bits equal to 1.

continued

8600 0841-000

SETUPINTERCOM Function

Table 3-1. Format 1 for SETUPINTERCOM Function Messages (cont.)

Word Field Value Description

8 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 2.

9 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 4.

10 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 4.

[31:08] Number of the originating MCS.

[23:09] Used by the sending MCS for internal purposes. When
a reply to this message is sent, this field is included in
the reply.

[14:15] LSNof the remote terminal.

1 [47:01] 1 If the reply is to be truncated at line width (see below).

[46:01] 0 If the user is to be restricted to those commands
marked FREE in the input to the table generation.

1 If the user can use any command.

[45:01] ODT bit. When this bit is 1, the CONTROLLER handles
the message exactly as if it came from an ODT.

[43:23] Dialogue number (for an ODT-simulating MCS). The
dialogueCS number is untouched by the CONTROLLER
and is sent back to the MCS for reference.

[19:04] 1 No response. to message.

2 Concise response, OK.

3 Expanded response.

[15:08] Width of the line, where 2 < line width < 80

[07:08] Number of lines on a page, where
o < lines <= ·24

2-4 Usercode. If a usercode exists, word [2].[46:07] is the
. length of the usercode to be applied to all PO (Print
Directory) system commands and control cards
received. If [2].[47:08] equals 0, no usercode is used.

5 Length of input string in units of characters.

6 to end Input string.

8600 0841-000 3-29

SETUPINTERCOM Function

Table 3-2. Format 2 for SETUPINTERCOM Function Messages

Word

0

3-30

Field

[47:08]

[39:01]

[38:07]

[31:08]

[23:09]

[14:15]

Value

21

1

2

4

6

Description

Type.

Using format 2.

Variant field, as follows (Variants 7, 8, 9, 10, 11, and
12 are used only by ODT-simulating MCSs):

Input request to the CONTROLLER for processing the
message.

Request to the CONTROLLER to continue with the
earlier request.

Request to the CONTROLLER for connection to
become an ODT-simulating MCS. Words 1, 2, 3, and 4
must have all bits equal to 1.

7 For an ODT-simulating MCS: request to the
CONTROLLER for disconnection. Words 1, 2, 3, and 4
must have all bits equal to 1.

8 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 2.

9 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 4.

10 For an ODT-simulating MCS: requests to the
CONTROLLER. The CONTROLLER discards all of the
requests waiting for an answer from this dialogue and
then proceeds as in Variant 4.

11

12

For an ODT-simulating MCS: requests to the
CONTROLLER. Words 1, 2, 3, and 4 must have all bits
equal to 1. On receiving this request, the operating
system starts sending security-related messages, such
as security violations or modifications to security
settings.

For an ODT-simulating MCS: requests to the
CONTROLLER. Words 1,2,3, and 4 must have all bits
equal to 1. On receiving this request, the operating
system stops sending security related messages.

Number of originating MCS.

Used by the sending MCS for internal purposes. When
a reply to this message is sent, this field is included in
the reply.

LSN of remote terminal.

continued

8600 0841-000

SETUPINTERCOM Function

Table 3-2. Format 2 for SETUPINTERCOM Function Messages (cont.)

Word

1

2

3

4 to end

8600 0841-000

Field

[47:01]

[46:01]

[45:01]

[43:23]

[19:04]

[15:08]

[07:08]

[15:16]

[31:16]

Value

1

o

1

1

2

3

Description

If the reply is to be truncated at line width.

If the user is to be restricted to those commands
marked FREE in the input to the table generation.

If the user can use any command.

ODT bit. When this bit is 1, the CONTROLLER handles
the message exactly as if it came from an ODT.

Dialogue number (for an ODT-simulating MCS). The
dialogue number is untouched by the CONTROLLER
and sent back to the MCS for reference.

No response to the message.

Concise response, OK.

Expanded response.

Width of the line, where 2 < line width < 80.

Number of lines on a page, where
o < lines < = 24*80.

Not used.

Message component word. When turned on, the bits of
this word indicate the existence of different message
components, as shown in Table 3-3.

For each specified component, a component
information word follows.

If bits 0, 1, or 2 of word 3 are turned on, each
corresponding component information word is
composed of the following two fields:

The length of the component, in bytes. For example,
the length of the command text.

The starting index, in words, of the component in the
message array.

If bit 3 of word 3 is turned on, the corresponding
session number component information word contains
the session number of the requestor. This number is
used for logging purposes.

If bit 4 of word 3 is turned on, the corresponding
return LSN number component information word
contains the value to be returned in the LSN number
field. This value can be different from the LSN number
of the input message.

continued

3-31

SETUPINTERCOM Function

Table 3-2. Format 2 for SETUPINTERCOM Function Messages (cont.)

Word Field Value Description

If bit 47 of word 3 is turned on, it indicates the
existence of a special action component word. If bit 0
of the corresponding special action word is turned on,
the usercode is checked for security access while the
command text is being processed. If the bit is turned

. off, the usercode is not checked.

Table 3-3 presents the values of the message component word, which is word 3
of format 2 of the SETUPINTERCOM function message.

Table 3-3. Bits for Message Component Word

Bit Component

o Command text

1 Usercode

2 Language

3 Session number

4 Return LSN number

47 Special action

ODT·Simulating MCS

3-32

When MARC is executed, it is automatically established as an ODT-simulating
MCS. Only one MCS in the system can be an ODT-simulating MCS. If you try to
establish another ODT-simulating MCS when MARC is running, the request will be
discarded. If you have already established another MCS as the ODT-simulating
MCS, and then you execute MARC, you will not be able to enter ODT commands
from MARC. It is strongly suggested that you do not establish any other MCS as

. an ODT-simulating MCS, which reserves this capability for use by MARC. You can
supply ODT features to any MCS by setting the ODT bit, which lets you enter
ODT commands that will be sent to the controller and handled as though they
came from an ODT.

Examples

R := SETUPINTERCOM(QUEUEARRAYREFID,QUEUEID);

R := SETUPINTERCOM(QUEUEARRAYREFID,QUEUEARRAY[2],MLSCAPABLE);

8600 0841-000

SIZE Function

SIZE Function
The SIZE function can be used to find out the length of a message array.

- SIZE - (- <message group designator> -) ----------------1

Explanation

If the message group designator contains a <message designator> construct as in
the first and second examples below, the SIZE function returns the length of the
message designator. If the message is null, the SIZE function returns O. If the
message group designator contains the construct <message array identifier>
<subarray selector> as in the third example, the size of the dimension
represented by the leftmost asterisk is returned. If the message group designator
contains the construct <message array identifier> as in the fourth example, the
size of the leftmost dimension is returned.

Examples

LENGTH := SIZE(MESSAGEID);

LENGTH := SIZE(MESSAGEARRAYID[1,2,3]);

DIMENSIONSIZE := SIZE(MESSAGEARRAYID[l,*,*]);

DIMENSIONSIZE := SIZE(MESSAGEARRAYID);

8600 0841-000 3-33

SYSTEMSTATUS Function

SYSTEMSTATUS Function

3-34

The SYSTEMST A TUS function gathers specified system information and places it
in the noncharacter array row.

- SYSTEMSTATUS - (- <noncharacter array row> - , - <arithmetic expression> - , •

~ <arithmetic expression>-) I

Explanation

The second and third parameters specify the system information that is to be
supplied.

The Boolean value returned is TRUE if, for any reason, the information requested
is not returned in the noncharacter array row. Field [11:08] of this value contains
the coded reason for failure. If the information requested is returned, the value
of the function is FALSE.

The SYSTEMSTATUS function is described in theA Series SYSTEMSTATUS
Programming Reference Manual.

Examples

IF SYSTEMSTATUS(A[*],X,Y) THEN
GO TO TROUBLE;

SYSTEMSTATUS(B[S,*],N+2,Z);

IF SYSTEMSTATUS(ARRAYID,3,JOBNUMBER)
AND SYSTEMSTATUS(B2[U,*],4,UNITNUMBER)

THEN
GO TO BIGTROUBLE;

8600 0841-000

USERDATA Function

USERDATA Function
The USERDAT A function provides a programmatic interface to the USERDAT A
operating system procedure. A description of the parameters, results, and error
codes of the function is found in the "MAKEUSER" section of the A Series
Security Administration Guide.

- USERDATA - (- <action parameter> - , ---,----.,.-------r

~ <task parameter> ~
~ <locator parameter> - , --,----------~

~ <outstuff parameter> ~ [<instuff parameter>] ~
~) --~

< action parameter>

- <arithmeti c expressi on> ------------------------1

<task parameter>

~ :task designator>

<locator parameter>

- <arithmetic expression> ----------,-----------------1

<outstuff parameter>

<poi nter expressi on;> ----------------.----------1:
<real read/write array row> -------'--------1

<real

<real

<real

array i dent i fi er> ::3 [~b~Cri ph 1] -
direct array identifier>

array reference identifier>

<single-precision simple variable> --------~

o --------------------------~

8600 0841-000 3-35

USERDATA Function

3-36

<real read/write array row>

<one-dimensional real array identifier> ------......-----------1
<one-dimensional real direct array identifier> -----l

<one-dimensional real array reference identifier>

<real array identifier> :3 <row selector>

<real direct array identifier>

<real array reference identifier>

<real direct array identifier>

A direct array identifier that is declared of type REAL.

<one-dimensional real direct array identifier>

A direct array identifier that is declared of type REAL and with one dimension.

<single-precision simple variable>

A simple variable whose identifier is declared of type INTEGER or REAL.

<instuff parameter>

1
<pointer expression>

<real array row>

<ar;thmet;c express;o~> :J
<real array row>

An array row whose identifier is declared of type REAL.

8600 0841-000

USERDATAFREEZER Function

USERDATAFREEZER Function'
The USERDATAFREEZER function freezes the SYSTEM/USERDATAFILE against
modification through the USERDATA operating system procedure. A description
of the parameters, results, and error codes of the function is found in the
"MAKEUSER" section of the Security Administration Guide.

- USERDATAFREEZER - (- <Boolean expression> -) --------.----------1

8600 0841-000 3-37

USERDATALOCATOR Function

USERDATALOCATOR Function

3-38

The USERDATALOCATOR function returns a locator word whereby the
corresponding portion of the user entry can be addressed. These locators are
interpreted in turn by the USER DATA and USERDATAREBUILD operating
system procedures and by the SYSTEM/MAKE USER program. A description of
the parameter, results, and error codes of the function is found in the
"MAKEUSER" section of the Security Administration Guide.

-USERDATALOCATOR - (--r- <pointer expression> -r-)
~ <string literal> ~

8600 0841-000

USERDATAREBUILD Function

USERDATAREBUILD Function
The USERDAT AREBUILD function constructs or modifies a USERFILE entry.
This function is used by the SYSTEM/MAKEUSER program. The operating system
procedure USERDAT AREBUILD performs the same task as the function. The
parameters, results, and error codes of the function are described in the
"MAKEUSER" section of the Security Administration Guide.

- USERDATAREBUILD - (- <real read/write array row> - , ----------.....

.- <real read/wri te array row> - , - <real read/wri te array row> -) -----~I

8600 0841-000 3-39

WRITESPO Function

WRITESPO Function

3-40

The WRITESPO function allows you to write data to an ODT. The function
returns a Boolean result to. indicate that the write has been initiated successfully
(FALSE) or that the write could not be initiated (TRUE); if TRUE, the function
result contains additional information.

- WRITESPO - (- <un; t number> - , - <character count> - , ----------...

~ <r1oncharacter di rect array row> - , - <event des; gnator> -) ---------1

<unit number>

<character count>

- <ar; thmet; c express; on> -,--------,------------------1

<noncharacter direct array row>

A direct array row whose identifier is declared with a <type> construct.

Explanation

The function requires the following four parameters:

Parameter

<unit number>

<character count>

<noncharacter direct array row>

<event designator>

Description

This parameter designates the external unit number
of the OOT to which the data is to be written.

This parameter designates the number of words and
characters of data to be transferred. The number of
words to be transferred is designated in field
[16:17]. The number of additional characters to be
transferred is designated in field [19:03] and must
be in the range 0 to 5, inclusive.

This parameter contains the data to be transferred
to the OOT. If desired, the 10MASK of the array can
be made equal to an appropriate mask.

This parameter designates the event to be caused
when the I/O is finished.

You must declare the noncharacter direct array row and the event designator in
the same block.

The WRITESPO function scans the direct array row from the first character
either to an end of text (ETX) character or for the number of words and

8600 0841-000

WRITESPO Function

characters indicated by the <character count> parameter. Any occurrence of the
character sequence ESC is replaced by two blanks.

If there is not an ETX character within the number of characters specified by, the
<character count> parameter, an ETX character is appended after the final
character that is to be transferred. If there is no room in the array to append the
ETX, the last character to be transferred is overwritten with an ETX. Only the
characters from the beginning of the array to the ETX are transferred to the
ODT.

As mentioned previously, the WRITESPO function returns a Boolean result to
indicate that the operation was initiated successfully (FALSE) or could not be
initiated (TRUE). If the result is TRUE, field [11:08] of the result contains one of
the following values:

Value Description

34 The <unit number> parameter did not designate an unreserved ODT.

40 The third parameter was, not a direct array row.

41 The noncharacter direct array row already has an I/O in progress.

42 The event deSignator and the noncharacter direct array row were not declared
in the same block.

You can obtain additional information about a particular WRITESPO operation by
interrogating the attributes of the direct array row passed as the third
parameter. For details about direct I/O buffer attributes, refer to the A Series
File Attributes Programming Reference Manual.

Example

The following statement writes 30 words plus 4 characters (184 characters) of
data from the direct array OPMESsAGE to ODT 24. The event IOFIN is caused
when the I/O is complete.

ERRFLAG := WRITESPO(24,30 & 4 [19:03],OPMESSAGE,IOFIN);

ERRFLAG is assigned the value TRUE if the initiation of the transfer is not
successful.

8600 0841-010 3-41

I

Section 4
Attributes

This section discusses the three types of DCALGOL attributes:

• Diskheader attributes

• Queue attributes

• Task attributes

Diskheader Attributes
This type of attribute allows you to interrogate the attributes of a diskheader.

- <diskheader array identifier> ---r------------.-
L (- <ari thmet i c express; on> -) J .

~ <diskheader attribute name> ------------------~

8600 0841-010 4-1

I

Diskheader Attributes

4-2

<diskheader attribute name>

BLOCKSIZE --..,.--------------------------1
DATE ------I

DUPLICATED

EOFBITS --~

EOFSEGMENT

EUNUMBER --~

FILEKIND --~

FILETYPE --~

lAD -----I

LASTACCESSDATE

MAXRECSIZE

MINRECSIZE

MODE -----I

ROWADDRESS

ROWS -----I

ROWSIZE --~

SAVEFACTOR

SIZEMODE ---I

SIZEOFFSET

SIZE2 ----I

UNITS ---.....

Description

Direct access to the contents of a diskheader array is not allowed. Instead, a set
of diskheader attributes is available to allow the site manager to modify or test
those attributes of a disk file header that are of interest.

Attribute mnemonic values can be used with diskheader attributes where they
would be appropriate with file attributes of the same name. Specifically, the
diskheader attributes UNITS and FILEKIND can be associated with their
corresponding attribute mnemonics. The diskheader attribute MODE, which
corresponds to the file attribute EXTMODE, has the associated mnemonics
SINGLE(o), HEX(2), BCL(3), and EBCDIC(4). When a diskheader attribute is
associated with a mnemonic, the mnemonic must be enclosed in parentheses and
must be preceded by the word VALUE.

Many of the diskheader attributes used in DCALGOL function identically to the
file attributes of the same name described in the File Attributes Reference
Manual. References are made to this manual wherever appropriate. Only those

8600 0841-010

Dlskheader Attributes

diskheader attributes that do not exactly correspond to file attributes in the I/O
subsystem or that pertain only to DCALGOL are described in this section.

The following are descriptions of each of the diskheader attributes. Each
deSCription includes the data type of the attribute (integer or Boolean) and
whether it can be changed (read/write) or only queried (read-only).

BLOCKSIZE

Integer, read/unite

Refer to the BLOCKSIZE file attribute in the File Attributes Reference Manual. I

DATE

Integer, read-only

The diskheader attribute DATE is synonymous with the file attribute
CREATIONDATE, which is described in the File Attributes Reference Manual.

DUPLICATED

Boolean, read/unite

I

Refer to the DUPLICATED file attribute in the File Attributes Reference Manual. I

EOFBITS

Integer, read/unite

The EOFBITS attribute is the number of bits of valid data in the EOFSEGMENT
attribute.

EOFSEGMENT

Integer, read/write

The EOFSEGMENT attribute is the relative segment number containing the end of
file (EOF) marker.

8600 0841-010 4-3

Diskheader Attributes

EUNUMBER

Integer, read/write

The· EUNUMBER attribute references the disk unit number that contains the row
indicated by the arithmetic expression.

Row numbers begin at 0; copyn~bers begin at 1. This attribute returns 0 when
read with a row number greater than the number of rows in the file minus 1. Any
attempt to write this attribute for such a row has no effect on the disk file
header. A run-time warning is issued the first time the program attempts to read
from or write to such a row.

FILEKIND

Integer, read/write

Refer to the FILEKIND file attribute in the File Attributes Reference Manual.

FILETYPE

Integer, read/write

Refer to the FILETYPE file attribute in the File Attributes Reference Manual.

lAD
Boolean, read-only

Refer to the lAD file attribute in the File Attributes Reference Manual.

LASTACCESSDATE
Integer, read-only

Refer to the USEDATE file attribute in the File Attributes Reference Manual.

4-4 8600 0841-010

Diskheader Attributes

MAXRECSIZE

Integer, read/write

Refer to the MAXRECSIZE file attribute in the File Attributes Reference Manual.

MINRECSIZE

MODE.

Integer, read/write

Refer to the MINRECSIZE file attribute in the File Attributes Reference Manual.

Integer, read/write

The diskheader attribute MODE corresponds to the file attribute EXTMODE,
which is described in the File Attributes Reference Manual.

ROWADDRESS

ROWS

Integer, read/write

The attribute ROW ADDRESS returns the physical disk address of an area of a
disk file. The ROW ADDRESS attribute requires an index (the row number) as a
parameter. If the disk file is DUPLICATED, the copy number is also required as a
parameter. Examples follow:

ADDRESS := DSK(ROWNBR).ROWADDRESS;

ADDRESS := DUPLDSK(ROWNBR,COPYNBR).ROWADDRESS;

Row numbers begin at 0; copy numbers begin at 1. This attribute returns 0 when
read with a row number greater than the number of rows in the file minus 1. Any
attempt to write this attribute for such a row has no effect on the disk file
header. A run-time warning is issued the first time the program attempts to read
from or write to such a row.

Integer, read/write

The ROWS attribute is the number of disk areas declared by the file.

86000841-010 4-5

I

I

Diskheader Attributes

ROWSIZE

Integer, read/unite

The ROWSIZE attribute is the number of disk segments contained in each disk
area.

SAVEFACTOR

Integer, read/unite

The SA VEFACTOR attribute is required to read or write the SAVEFACTOR field
of the disk file header when that header is stored in a diskheader array. Any
meaning that this field has is attached by the Disk Manager.

If the file attribute KIND has the value DISK, no predefined action is taken by
the system with regard to the value of the file attribute SA VEF ACTOR. A field is
reserved in the diskheader for the value of the SA VEF ACTOR attribute. The
value in this field can be established through appropriate file attribute constructs
only at file creation time. At other times, the file attribute SA VEF ACTOR refers
only to a field in the file parameter block and is not transferred into the header.
In any case, automatic purging of the file is never done, and the TITLE of the file
is never put in a "to-be-purged" queue.

This attribute corresponds to the file attribute SA VEF ACTOR, which is described
in the File Attributes Reference Manual.

SIZEMODE

Integer, read/unite

Refer to the SIZEMODE file attribute in the File Attributes Reference Manual.

SIZEOFFSET

Integer, read/unite

Refer to the SIZEOFFSET file attribute in· the File Attributes Reference Manual.

SIZE2

Integer, read/unite

Refer to the SIZE2 file attribute in the File Attributes Reference Manual.

4-6 8600 0841-010

Diskheader Attributes

UNITS

Integer, read/write

Refer to the UNITS file attribute in the File Attributes Reference Ma,n'l.UJl. I

86000841-010 4-7

Queue Attributes

Queue Attributes
The syntactical structure, use, and semantics of queue attributes are similar to
those of task attributes and file attributes. Illegal attribute references (such as
attempts to assign a read-only attribute) result in the display of a run-time error
message on the console and entry of this message in the system log. However, the
program does not terminate.

- <queue designator> - . - <queue attribute name> --------------4
<queue attribute name>

QACTIVE --.....,....------------------------1
QBlOCKSIZE

QDISKERROR

QHEADSIZE

QINSERTEVENT

QMEMORYLIMIT
l

QMEMORYSIZE

QMESSAGECOUNT

QREMOVEWAIT

QROWSIZE ----I

QSIZE ----/

QTANK ----/

QUSERCOUNT

The following are descriptions of each of the queue attributes. Each description
includes the data type of the attribute (integer, Boolean, or event) and whether it
can be changed (read/write) or only queried (read-only).

QACTIVE

4-8

Boolean, read/write

The QACTIVE attribute returns the current active state of a queue. Making this
attribute equal to TRUE explicitly activates the queue. Making this attribute
equal to FALSE deactivates the queue and flushes any messages currently in the

. queue. The QACTIVE attribute is initially FALSE.

8600 0841-010

Queue Attributes

QBLOCKSIZE

Integer, read/write

The QBLOCKSIZE attribute specifies the number of words per block in the tank
file. The default value is 3000. The value of this attribute is rounded up to a
multiple of 30, if necessary, with a minimum of 30 and a maximum of 65520. You
cannot alter the QBLOCKSIZE value when the QTANK attribute is set to TRUE.

If you increase the value of QBLOCKSlZE, you can reduce the amount of disk I/O
time for a queue. However, this action also increases memory requirements. Two
buffers QBLOCKSIZE-words long are allocated for each queue. Therefore, by
default, 600 words are required for buffer space.

If you use the COMBINE statement to combine two queues whose QBLOCKSlZEs
differ, there is a danger that these two values can be undefined in the host queue
if either queue is tanked and if the priority is equal to TRUE (combine to head of
the host queue). For more information about the COMBINE statement, refer to
"COMBINE Statement" in the "StatementsU section.

QDISKERROR

Boolean, read/write

When the QDISKERROR attribute is interrogated, it returns a Boolean value that
indicates if any messages in the queue have been lost because of a tanking error.

In tanking messages to disk, the operating system usually recovers the data in a
disk write ~rror. If a write error occurs, the operating system stops the tanking
and leaves the messages intact in memory.

However, if a read error occurs when·detanking messages from disk, the
operating system is unable to recover the tanked messages. Because the messages
in the disk tank are linked, the entire disk tank of that queue must be flushed by
the operating system. To indicate that messages have been lost, the operating
system displays the following message:

<mixno> TANKING DISK ERROR

At the program level, the queue attribute QDISKERROR is given the value TRUE
by the operating system for the above.situation.

The program can interrogate or change the value of this attribute at any time.
Making this value equal to TRUE or FALSE has no effect on the queue; the
operating system makes this attribute equal to TRUE only when messages are lost
because of a tanking disk error.

86000841-010 4-9

Queue Attributes

QHEADSIZE

Integer, read-only

The QHEADSIZE attribute indicates the size of the first message in the queue.
The value of the attribute is 0 if the queue is empty.

QINSERTEVENT

4-10

Event, read-only

The QINSERTEVENT attribute is an event-valued attribute; therefore, it is an
event designator and can be used wherever an <event designator> construct is
used in ALGOL and DCALGOL.

This event is caused each time a message is inserted in a queue with the INSERT
statement or COMBINE statement. The QINSERTEVENT attribute is turned off
when the last message is removed from the queue by using the REMOVE function,
COMBINE statement, or FLUSH statement.

The following examples illustrate two ways to use QINSERTEVENT. In each
example, the assignment to L saves the message length.

The following example simply removes the next message from queue Q and waits
if there is no message in the queue:

WHILE (L:=REMOVE{MSG,Q» = 0 DO
WAIT(Q.QINSERTEVENT);

In the next example, program execution is suspended until one of the following
occurs:

• Five seconds have elapsed.

• There is a message in Q1.

• Event EV has happened.

• There is a message in Q2.

The ellipses (...) represent code to handle each contingency. The entire program
fragment could be the body of a loop or the outer block of an MeS. ~

I := WAIT«5),Ql.QINSERTEVENT,EV,Q2.QINSERTEVENT);
CASE I OF
BEGIN

1: % We have WAITed 5 seconds

2: % There was a message in Ql
WHILE (L:=REMOVE(MSG,Ql» > 0 00'

8600 0841-010

3: % Event EV has HAPPENED
RESET(EV)

4: % There was a message in Q2
WHILE (L:=REMOVE(MSG,Q2» > 0 DO

END;

Queue Attributes

Note that there is an implied priority in the WAIT statement. For example, all
messages are removed from Q1 before EV or Q2 is noticed. This priority is
implicit in the WAIT statement.

QMEMORYLIMIT

Integer, read/write

The QMEMORYLIMIT attribute defines the maximum value that the attribute
QMEMORYSIZE can achieve before disk tanking is invoked. The default value is
4096 words. The maximum value of this attribute IS (2-16)--1 or 65,535. Giving
this attribute the value of 0 causes all messages to be tanked. You can change
QMEMORYLIMIT at any time with the following results:

• If you increase the value, the system does not attempt to detank messages in
order to raise QMEMORYSIZE to the new limit.

• If you decrease the value, the system tanks messages until QMEMORYSIZE is
less than or equal to the new limit.

QMEMORYSIZE

Integer, read-only

The QMEMORYSIZE attribute reflects the current size (in words) of the resident
portion of a queue. This size is the sum of the sizes for each complete message
area in the queue plus one word (a link word) for each message.

QMESSAGECOUNT

Integer, read-only

The QMESSAGECOUNT attribute is the total number of messages in the queue
and includes any that have been tanked.

86000841-010 4-11

I

Queue Attributes

QREMOVEWAIT

Boolean, read/write

When equal to TRUE, the QREMOVEW AIT attribute causes a REMOVE function
on an empty queue to wait until a message is inserted. Note that the same value
of QREMOVEW AIT applies to all processes that see the same physical queue.

By making Q.QREMOVEW AIT equal to TRUE, the first example shown for
QINSERTEVENT could be replaced by the following:

L := REMOVE(MSG,Q);

QROWSIZE

QSIZE

4-12

Integer, read/write

The QROWSIZE attribute specifies the number of blocks in each row of the tank
file. The default value is 5. You cannot change the QROWSIZE value if the
QTANK attribute is set to TRUE.

Increasing QROWSIZE reduces the overhead involved in allocating tank space
while increasing the space requirements~ If the default values for QROWSIZE and
QBLOCKSIZE are used, a tank row consists of 500 sectors.

Initially, two rows are allocated when tanking is invoked. Rows are allocated and
deallocated as the size of the queue increases and decreases. All disk space is
returned when the queue is no longer tanked. The tank file can contain a
virtually unlimited number of rows.

If you use the COMBINE statement to combine two queues whose QROWSIZEs
differ, there is a danger that these two values can be undefined in the host queue
if either queue is tanked and if the priority is equal to TRUE (combine to head of
the host queue). For more information on the COMBINE statement, refer to
"COMBINE Statement" in the "Statements" section of this manual.

Integer, read-only

The QSlZE attribute is the sum of the sizes of each message in the queue (both in
memory and on disk). This size includes the message area only and not the
message link words.

8600 0841-010

Queue Attributes

QTANK
. Boolean, read/write

The QT ANK attribute is TRUE if a portion of the queue is currently resident on
disk and FALSE if the entire queue is in memory. Making this attribute equal to
TRUE causes all messages currently in memory to be tanked to disk. Making
QT ANK equal to FALSE is an error.

QUSERCOUNT
Integer, read/write

The QUSERCOUNT attribute represents the number of independent users of a
queue. QUSERCOUNT is increased by one when the queue is passed by value to a
procedure and is decreased by one when exiting the procedure. QUSERCOUNT
can also be altered by the A TT ACH statement. For more information on the
ATTACH statement refer to "ATTACH Statement" in the "Statements" section of
this manual.

For example, assume that Ql references a queue whose physical existence is
referenced as QQl. Assume also that Q2 references a queue (distinct from QQl)
whose physical existence is referenced as QQ2. Finally, assume that the statement
ATTACH (Ql,Q2) is executed. After execution, both Ql and Q2 reference the
same physical queue, QQ2. The user count of the physical queue QQl is decreased
by one, and the user count of the physical queue QQ2 is increased by one. Both
Ql.QUSERCOUNT and Q2.QUSERCOUNT equal the user count of the physical
queue QQ2.

Example

IF (NOT OUTPUTQ.QACTIVE) OR (OUTPUTQ.QMESSAGECOUNT=O) THEN
GO TO XIT;

CASE WAIT«2},Q.QINSERTEVENT,E}-1 OF
BEGIN
0:
1: S := REMOVE(MSG,Q};
2: GO TO XIT;
END;

8600 0841-000 4-13

Task Attributes

Task Attributes
The task attribute names that are associated with a task designator are described
in alphabetical order in the following discussion. These task attribute names are
pertinent to data comm and are a subset of task attributes. These task attributes,
as well as others not pertinent to data comm, can be found in the A Series Task
Attributes Programming Reference Manual.

- <task desi gnator> - . - <task attribute name> ---------------4

<task attribute name>

AUTOSWITCHTOMARC -r--------------------------I

BACKUPFAMILY

DESTNAME ----I

DESTSTATION

DISPLAYONLYTOMCS

INHERITMCSSTATUS

MAXWAIT ----I

ORGUNIT ----I

SOURCEKIND ---i

SOURCESTATION

STATION ----I

TANKING -----'

The following are descriptions of each of the task attributes. ' Each description
includes the data type of the attribute (integer, Boolean, real, pointer, or
identifier) and whether it can be changed (read/write) or only queried
(read-only).

AUTOSWITCHTOMARC

4-14

Boolean, read/write

The AUTOSWITCHTOMARC attribute affects only processes that are initiated by
a MARC session and that open a remote file. For these processes, this attribute
specifies whether or not the task status screen is automatically displayed when
the process terminates.

8600 0841-000

Task Attributes

BACKUPFAMILY

Identifier, read/write

The BACKUPF AMILY attribute specifies the family to which all print and punch
backup files generated by the task are to be allocated.

DESTNAME

Pointer, read/write

The DESTNAME attribute can be equal to any station name defined in Network
Definition Language II (NDLI!) or to the literal "SITE." (The trailing period is
part of the literal.) Making this attribute equal to a station name causes all
printer and punch backup to be built under the directories REMLPXX and
REMCPXX, respectively. The XX in the titles is the MCS number assigned to that
station.

This attribute can also be read; in that case, DESTNAME returns the station name
associated with the destination unit. If the attribute is interrogated and a remove
destination has not been specified, it returns the string "SITE." (The trailing
period is part of the string.)

DESTSTATION

Integer, read/write

The DESTST ATION attribute allocates or returns the destination station.
DESTSTATION can be allocated only by an MCS. When DESTSTATION is
allocated, the destination MCS number also is made equal to the MCS number of
the MCS currently controlling the destination station.

DISPLAYONL YTOMCS

Boolean, read/write

The DISPLA YONLYTOMCS attribute controls the display of DISPLAY messages. If
equal to TRUE, messages generated by this task are not displayed at the ODT.

INHERITMCSSTATUS

Boolean, read/write

The INHERITMCSST ATUS attribute (if TRUE) causes a process to inherit the
privileges of the MCS. This task attribute enables an MCS to initiate an external
code file that performs some MCSfunctions.

8600 0841-000 4-15

Task Attributes

MAXWAIT

Real, read/write

The MAXW AIT attribute specifies the maximum number of seconds a task can
wait on a specified system function.

ORGUNIT

Integer, read-only

The ORGUNIT attribute records the logical station number (LSN) or physical unit
number of the unit that initiated the process.

SOURCEKIND

Integer, read-only

The SOURCEKIND attribute returns an integer value equal to the unit type (that
is, the value of the KIND file attribute) associated with the unit that originated
the task.

SOURCESTATION

Real, read/write

The SOURCEST ATION attribute allocates or returns the originating station (LSN).
This attribute can be allocated only by an MCS.

STATION

Integer, read/write

The STAT-ION attribute stores the LSN of the station to be assigned any remote
files used by the process. If STATION has a nonzero value, the TITLE file
attribute does not affect selection of a station for remote files. If the STATION
value is 0, the TITLE file attribute determines the station that is assigned a
remote file.

TANKING

4-16

Mnemonic, read/write

The TANKING attribute designates the default tanking mechanism f9r remote
files used by the process. Tanking is a method that the system can use to
temporarily store messages that a process writes to a remote file.

8600 0841-000

Examples

REPLACE TSK.DESTNAME BY PB;

IF TSK.SOURCEKIND = VALUE(REMOTE) THEN
MYLSN := TSK.SOURCESTATION;

8600 0841-000

Task Attributes

4-17

Section 5
DCWRITE Information

This section is structured as follows:

• General DCWRITE information, which applies to all DCWRITE types

• Specific DC WRITE information, listed in order of DCWRITE type number

General DCWRITE Information
A message control system (MCS) recognizes two general classes of messages:

• Messages constructed for use with the DCWRITE function by the MCS.

• Messages generated elsewhere within the data comm subsystem that
eventually appear in one of the queues of the MCS.

Messages constructed by the MCS for use with the DCWRITE function.adhere to a
generally consistent format insofar as requirements for minimum message size
and field locations for certain types of information. For example, the type field
for DCWRITE messages is always located in MESSAGE [0].[47:08], but the value in
this field varies depending on the type of DCWRITE function to be performed.

DCWRITE Message Format

Messages constructed for use with the DCWRITE function are at least six words
. in length. (Exceptions to this requirement are noted where applicable.) The

general format of inessages used in conjunction with the DCWRITE function is
presented in Table 5-1.

8600 0841-000 5-1

General DCWRITE Information

5-2

The following acronyms are used in Table 5-1:

Acronym

DLS

FRSN

LSN

LSP

NSP

RSN

Word

[0]

[1]

[2]

[3]

[4]

Meaning

A number made up of three components that are separated by 'colons (:)
(the NSP number, LSP number, and the station number).

File relative station number.

Logical station number.

Line support processor.

Network support processor.

Relative station number.

Table 5-1. DCWRITE Message Format (General)

Field

[47:08]

[39:16]

[23:24]

[23:01]

[47:08]

[39:08]
to

[32:01]

[31:32]

[47:08]

[39:16]

[23:24]

[47:24]

[23:08]

[15:08]

[07:08]

[47:24]

[23:24]

Value

Type field.

Variant field.

Description

LSN·FRSN·DLS number field

o [22:23] is an LSN or FRSN. If [22:23] is an
FRSN, then [23:10] is a file number, and
[13:14] is an RSN.

1 [22:23] is a DLS number: [22:07] is the
relative NSP number, [15:08] is the line
number (line number= relative LSP number •
16 + adapter number), and [07:08] is the
station number.

Priority of output (0-127); otherwise, O.

TOGGLES: [39:01] is TOGGLE [8], [38:01] is
TOGGLE [7], and so on until [32:01] is
TOGGLE [1].

Not used.

Retry count field.

Text size field.

, Not used.

Not used.

Tally [0].

Tally [1].

Tally [2].

Message number field.

Not used.

. continued

8600 0841-000

General DCWRITE Information

Table 5-1. DCWRITE Message Format (General) (cont.)

Word

[5]

[6]

Field

[47:48]

Text

[n] Text

Value Description

Not used (reserved for system use).

In many respects, messages resemble arrays when the information within a
message is manipulated. The ALLOCATE statement is used to obtain space for a
message. The ALLOCATE statement requires two parameters: a message or a
message array identifier, followed by an arithmetic expression that indicates the
number of words the message spans. For example, the following statement
allocates a 6-word message and places the data descriptor for it in the message
variable MSG:

ALLOCATE(MSG,6);

After being allocated, a simple message variable can be referred to as a
one-dimensional array. For example, the following construct illustrates a typical
statement that appears in conjunction with messages being constructed for use
with the DCWRITE function:

MSG[O].[47:08] := DCWRITETYPEATTACH;

The hidden dimension of a message has a lower bound of O. All words in a
message are equal to binary 0 when first allocated.

Interpretations of the fields within a message constructed for the DCWRITE
function are described in the following discussion.

Type Field (MSG[O].[47:08])

The type field contains one of a number of possible values to inform the
DCWRITE function which operation to perform. Specific values are discussed
with each DCWRITE type later in this section.

Variant Field (MSG[O].[39:16])

The variant field is used for qualification, variations, or additional information
with certain DC WRITE types (for- example, carriage control in the WRITE
DCWRITE function). The specific meaning of the variant field is discussed with
each applicable DCWRITE type.

8600 0841-000 5-3

General DCWRITE Information

LSN/FRSN/DLS Field (MSG[O].[23:24])

For most DCWRITE types, an LSN must be supplied to designate the station that
is to be affected by the particular DCWRITE function. LSNs can be obtained
through several mechanisms, one of which is the STATION ATTACH DCWRITE
function. An extension allows this field to contain the DLS number of a station,
indicated by MSG[O).[23:01) = 1. The format of the field in that case is as follows:

MSG[0].[22:07] = Relative NSP number
[15:08] = Line number
[07:08] = Station number

Some DCWRITE types require an FRSN instead of the customary LSN or DLS
number. An FRSN is obtained for a station at file-open time.

Priority Output Field (MSG[1].[47:08])

The priority of the message produced by the MCS is contained in this field. The
MCS can produce 128 levels of priority, with 0 as the lowest priority and 127 the
highest. If the priority level of the message is not zero, the DCC inserts the
message into the station queue following messages of higher or equal priority and
preceding messages of lower priority. In this way, the MCS messages are
transmitted in a high-to-Iow priority sequence, rather than the order in which the
messages were received by the DCC.

TOGGLE and TALLY Fields (MSG[1].[39:08] and MSG[3].[23:24])

For certain DCWRITE types (WRITE and READ-ONCE ONLY), values can be
supplied in these fields for an NDLII-written algorithm that initializes its
TOGGLEs and TALLY s by using the INITIALIZE statement in the NDLII
algorithm.

Retry Count Field (MSG[2].[47:08])

The value in the retry count field (supplied by the MCS) is used to determine the
total number of retries for any error conditions encountered by the NSP. If a
value of 255 (decimal) is supplied for this field, the retry count designated for
the station in the DAT ACOMINFO file is used.

Text Size Field (MSG[2].[39:16])

5-4

The text size field specifies the number of bytes of meaningful text (beginning at
MSG[6), six EBCDIC characters per word) in th.e message. For some DCWRITE
types, this field is not applicable.

8600 0841-000

Gen~ral DCWRITE Information

Message Number Field (MSG[4].[47:24])

An MCS can elect to assign message numbers to all messages that it allocates in
the system, thus providing some ability to audit the flow of its messages in the
system. The software system preserves the integrity of this field and does not use
it for other purposes.

If the MCS is participating in object job I/O for a station and the MCS receives an
OBJECT JOB OUTPUT (Class = 3) message from the object job, the message
number in this field in that message contains the FRSN. If the MCS chooses to
forward this message to the station, it can choose not to alter the message
number field so that if the MCS must later recall the message, it can determine
the origin (for example, which file and which station in the file) of the recalled
message.

Text (Beginning at MSG[6])

Text is assumed to be EBCDIC characters (8-bit bytes) by the components of the
data comm system and is left justified starting in word 6 of the message. Some
DCWRITE types require no text. If translation for ASCII or other character sets is
required for a given station, the translation is accomplished at the NSP.

MCS Calls on DCWRITE

Depending on the specific type of DCWRITE function desired, one or two
parameters are supplied to the DCWRITE function, as follows:

DCWRITE «message designator» or
DCWRITE «message designator>,<queue designator»

DCWRITE is a typed function and returns a value that indicates whether or not
errors occurred during the performance of the desired function.

All calls on the DCWRITE function require that a non-null message of at least six
words be passed as the first (and possibly only) parameter. The exact minimum
message size depends on the particular DCWRITE function to be performed.

Except where noted in specific DCWRITE calls, on exit from the DCWRITE
function, the message passed as a parameter is null. The nonzero values returned
from the DCWRITE function denote error situations that cannot be overlooked
and can indicate programming errors in the calling MCS. In these error cases, the
message that was passed as a parameter to the DCWRITE function remains
unaltered and is non-null on exit from· the DCWRITE function.

In many cases, the task of the DCWRITE function can. be properly accomplished
only with the cooperation of the NDLII algorithm. For example, a call on the
WRITE DCWRITE (DCWRITE Type = 33) function results in the transmission of
the text only if the NDLII algorithm performs the proper output action. This
cooperation is especially crucial when error conditions occur.

8600 0841-000 5-5

Summary of DCWRITE

Summary of DCWRITE

5-6

Table 5-2 shows a summary of the DCWRITE functions, and Table 5-3 lists the
DCWRITE errors in a summary format. The possible values returned by the
DCWRITE function are given in Table 5-4.

Category

ENVIRONMENT

STATION

Table 5-2. Summary of DCWRITE Types

Type
Number Function

o INITIALIZE PRIMARY QUEUE

1 STATION ATTACH

2 INTERROGATE MCS

3 INTER·MCS COMMUNICATE

4 INTERROGATE STATION
ENVIRONMENT

5 ATTACH SCHEDULE STATION

32 CHANGE CURRENT QUEUE

33 WRITE

34 READ·ONCE ONLY

35 ENABLE INPUT

36 DISABLE INPUT

37 MAKE STATION READY/NOT READY

38 SET APPLICATION NUMBER

39 SET CHARACTERS

40 SET TRANSMISSION NUMBER

41 . RECALL MESSAGE

42 STATION DETACH

43 SET/RESET LOGICALACK

44 ACKNOWLEDGE

45 TRANSFER STATION CONTROL

46 WRITE AND RETURN

48 NULL STATION REQUEST

49 SET/RESET SEQUENCE MODE

53 WRITE TO TRANSFERRED STATION

55 SEND MCS RESULT MESSAGE

continued

8600 0841-000

Summary of DCWRITE

Table 5-2. Summary of DCWRITE Types (cont.)

Type
Category Number Function

56 SET PSEUDOSTATION ATTRIBUTES

ATTRIBUTE 64 STATION ASSIGNMENT TO FILE

65 WRITE TO OBJECT JOB

66 STATION BREAK

67 ADD STATION TO FILE

68 CHANGE TERMINAL ATTRIBUTES

69 SUBTRACT STATION FROM FILE

LINE 96 MAKE LINE READY

97 MAKE LINE NOT READY

98 DIALOUT

99 DISCONNECT

100 ANSWER THE PHONE

101 INTERROGATE SWITCHED STATUS

102 SET/RESET AUTOANSWER

103 SET/RESET LINE LOGS-TALLYS

104 LINE INTERROGATE

105 FORCE LINE NOT READY

RECONFIGURATION 128 SWAP LINES

129 EXCHANGE LSPS

130 MOVE/ADD/SUBTRACT STATION

131 UPDATE LINE ATTRIBUTES

Table 5-3. Summary of DCWRITE Errors

Value Description

064 MESSAGE MAY NOT BE NULL

065 MUST INITIALIZE PRIMARY QUEUE

066 MCS NOT DEFINED IN NOLII

067 QUEUE PARAMETER REQUIRED

068 INVALID DCWRITE TYPE

continued

8600 0841-000 5-7

Summary of DCWRITE

5-8

Table 5-3. Summary of DCWRITE Errors (cont.)

Description

STATION IS NOT YOURS

STATION IS ALREADY YOURS

INVALID LSN

TEXT SIZE > ACTUAL MESSAGE SIZE

MESSAGE TOO SMALL

PRIMARY QUEUE ALREADY INITIAl-IZED

DATACOM NOT INITIALIZED

UNKNOWN NSP

UNKNOWN LINE NUMBER

UNKNOWN STATION

BAD NAME FORMAT

INVALID FILE NUMBER

INVALID REL STA NUMBER

STATION ALREADY IN FILE

STATION NOT ASSIGNED TO THE FILE

STATION MUST BE NOT READY

THIS LINE MAY NOT BE DIALED OlJT

TYPE IS IN APPROPRIATE FOR LlN~

NSP NOT INITIALIZED

STATION HAS NO LINE ASSIGNMErJT

LINE CURRENTLY BEING CHANGEr'

STATION CURRENTLY BEING CHAf',IGED

MCS DOES NOT CONTROL THE LINE

STATION/STATIONSET INFORMATION WAS NOT FOUND IN THE
DATACOMINFO FILE

DESIGNATED NSPCAN'T BE EXCH,ANGED

IMPROPER LSP MASK SUPPLIED

LINES MUST BE IN SAME NSP

LINE CAN'T BE SWAPPED (MAXSTATIONS=O)

INVALID DESTINATION (MAXSTATIONS=O)

NO MORE ROOM ON LINE

continued

8600 0841-000

Summary of DCWRITE

Table 5-3. Summary of DCWRITE Errors (cont.)

Value Description

099 STATION NOT CAPABLE OF SEQ MODE

100 SEQUENCE # SIZE MUST BE 1 THROUGH 8

101 STATION MYUSE VALUE INVALID

102 MCS COULD NOT BE EXECUTED

103 MCS IS NOT RUNNING

104 INVALID APPLICATION NUMBER

105 MCS IS ALREADY IN EXECUTION

106 NSP IS NOT-ROY OR OFFLINE

107 NAME INDEX NOT WITHIN MSG AREA

108 UNKNOWN TERMINAL NAME

109 DEFAULT TERMINALS NOT ALLOWED

110 UNKNOWN LINE NAME

111 STA ADAPTER & MODEM MISMATCH

112 STA ADAPTER & TERMINAL MISMATCH

113 STA/LiNE LINE CONTROL MISMATCHED

114 STA/LiNE ADAPTER TYPES MISMATCHED

115 LINE MODEM & STA ADAPTER MISMATCHED

116 ADAPTER TYPE OUT OF RANGE

121 STATION MUST BE ATTACHED

122 DLS REQUIRED (DLS.[23:01] = 1)

124 UNKNOWN LSP NUMBER

125 LINE ALREADY ATTACHED (MAINTENANCE)

126 LINE NOT ATTACHED (MAINTENANCE)

137 BOTH LINES MUST BE DIALOUT

138 SCHEDULE STA CAN'T HAVE LINE

139 SCHEDULE STA CAN'T BE TRANSFERRED

140 SCHEDULE STA CAN'T BE ADDED TO FILE

141 IMPROPER VARIANT FIELD

143 STA CAN'T BE ADDED TO FILE FOR SWAP JOB

144 INVALID OUTPUT TANKING SPECIFICATION

170 10ERROR ON DATACOMINFO FILE

continued

8600 0841-000 5-9

Summary of DCWRITE

5-10

Value

171

173

174

175

176

177

178

179

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Table 5-3. Summary of DCWRITE Errors (cant.)

Description

DCRECON DSED AFTER 10ERROR

DCRECON ERROR OCCURRED IN SUBTRACTING STATION

DCRECON ERROR OCCURRED IN ADDING STATION

LINE STATION ALREADY ASSIGNED

DCRECON ERROR OCCURRED IN SWAPPING LINES

NSP NOT FOUND FOR LSP

FILE HAS BEEN CLOSED DCWRITE=67

OUTPUT PRIORITY MUST BE IN THE 0 TO 127 RANGE

NOT IN NETWORK MODE

ATIACH NOT VALID FOR LOCAL STATION

CONNECT TO LOCAL HOST NOT VALID

INVALID BNA STATION

COULD NOT INITIATE STATION TRANSFER

CANNOT ISSUE ON A PSEUDOSTATION

ALLOWED ONLY ON A PSEUDOSTATION

STATION ALREADY HAS A F!JLLY-PARTICIPATING MCS

STATION DOES NOT HAVE FULLY-PARTICIPATING MCS

ALLOWED ONLY BY FULLY-PARTICIPATING MCS

NO PSEUDOSTATIONS AVAILABLE

SWITCHED LINE MAY NOT BE SWAPPED WITH PRIVATE LINE

BIT-ORIENTED LINE MAY NOT BE SWAPPED WITH
CHARACTER-ORIENTED LINE

INCOMPATIBLE ORIGINAL DCWRITE TYPE AND RESULT CLASS

INVALID ODT UNIT NUMBER

ALLOWED ONLY BY THE ODT /DRIVER

INVALID PSEUDOSTATION NAME

DUPLICATE PSEUDOSTATION NAME

CANNOT SUBTRACT STATION FROM FILE

8600 0841-000

8600 0841-000

Summary of DCWRITE

Table 5-4. Results from the DCWRITE Function

Value Description

o The function was accomplished (no apparent errors).

64 The message parameter was null (message must be non-null).

65 The primary queue was not yet initialized (for example, INITIALIZE
PRIMARY QUEUE DCWRITE not yet performed).

66 The calling MCS was not named in the DATACOMINFO file, or an invalid
MCS number was supplied.

67 A queue parameter was required for this DCWRITE function, but none
was supplied.

68 The type requested was not implemented (probably an incorrect value
was supplied in the type field).

69 The station name, LSN, or DLS number supplied to the DCWRITE
function is under control of a different MCS.

70 The station name, LSN, or DLS number supplied to the STATION
ATIACH DCWRITE was already attached to the calling MCS.

71 The LSN supplied was invalid.

72 The value specified in MSG[2].[39:16] (text size) exceeded the message
size.

73 The message parameter supplied did not meet the minimum size
requirements for the specific DCWRITE function called.

74 The INITIALIZE PRIMARY QUEUE DCWRITE was previously called (only
one call of this DCWRITE is allowed and necessary for the operation of
the MCS).

75 The data comm subsystem was not yet initialized.

76 An invalid or unknown relative NSP number was specified in the DLS
number.

77 An invalid or unknown line number was designated in the DLS ·number.

78 An invalid or unknown station number was specified in the DLS number.

79 An external standard-form identifier (for example, station name) had
improper form or was too long.

80 An invalid file number was specified in the FRSN. (This result might
occur if the file is valid but has CLOSED with retention.)

81 An invalid relative station number was specified in the FRSN.

82 The station supplied to the STATION ASSIGNMENT TO FILE DCWRITE
was already assigned to the file.

83 An MCS attempted to write to an object job before the station was
assigned to the file.

continued

5-11

Summary of DCWRITE

5-12

Table 5-4. Results from the DCWRITE Function (cont.)

Value Description

84 The type of DCWRITE attempted requires the station to be in the NOT
READY state.

85 An attempt was made to dial out on a line for which no automatic calling
unit was supplied.

86 An attempt was made to perform a switched-line function on a line that
was not switched.

87 An attempt was made to perform a data comm function that resulted in
a reference to an uninitialized NSP.

88 An attempt was made to perform a data comm function t%n a station
line that had no current hardware (line) assignment.

89 An attempt was made to perform a data comm function t%n a line that
was currently involved in reconfiguration.

90 An attempt was made to perform a data comm function t%n a station
that was currently involved in reconfiguration.

91 An attempt was made to perform a data comm function t%n a line over
which the requesting MCS had no control.

92 An attempt was made to perform a move/add/subtract station request
when the station information did not exist in the DATACOMINFO file.

93 An attempt to perform LSP-exchanging was made where the indicated
LSP was not known to be exchanged with any other NSP.

94 An attempt to perform LSP-exchanging was made where the LSP mask
that was supplied was inappropriate (for example, the indicated LSPs
were under control of the other NSP or did not exist).

98 An attempt to move a station was made in which the destination line had
no additional table space in which to accommodate the station.

99 An attempt was made to set/reset sequence mode for a station that was
not sequence-mode-capable.

100 The sequence number size supplied with set/reset sequence mode was
less than one or greater than eight.

101 A request to assign a station to a file was denied because of improper
use (for example, output-only device to the input file).

102 An MCS could not be initiated (either the program was not present in the
disk directly or it was not a code file).

103 An attempt was made to communicate with an MCS that was not
initiated/executing, and no automatic initiation was requested.

104 An invalid application number was supplied.

105 The MCS was already running.

continued

8600 0841-000

Summary of DCWRITE

Table 5-4. Results from the DCWRITE Function (cont.)

Value Description

106 The NSP designated as the recipient for an LSP exchange request was
either NOT READY, not initiated, or offline.

107 The name index was outside the message area.

108 The terminal name was unknown.

109 A default terminal name was not acceptable as a terminal name.

110 The line name is unknown.

III The adapter and modem were incompatible.

112 The adapter and terminal were incompatible.

113 The station and line control procedure were incompatible.

114 The station and line adapter were incompatible.

115 The modem and line adapter were incompatible.

116 An invalid adapter number was supplied.

121 The station was not attached to the requesting MCS.

122 A DLS number was required (DLS.[23:01] = 1).

124 The LSP was not defined in the NSP.

125 A line was already attached.

126 A line was not attached.

137 Both lines must be dial-out capable.

138 The schedule station might not have had a line assignment.

139 The schedule station might not have been transferred.

140 The schedule station might not have been added to a file.

141 The variant field was improper for this DCWRITE.

143 An invalid attempt was made to add a station to a file of a SWAP task.

144 The output tanking value was invalid.

170 An I/O error occurred reading from or writing to the DATACOMINFO file.

171 DCRECON failed to recover after an I/O error, or failed to link to the
DATACOMSUPPORT library.

173 A DCRECON error occurred in subtracting a station.

174 A DCRECON error occurred in adding a station.

175 The station is already assigned to a line.

176 A DCRECON error occurred in swapping lines.

continued

8600 0841-000 5-13

Summary of DCWRITE

5-14

Table 5-4. Results from the DCWRITE Function (cont.)

Value Description

177

178 .

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

The destination NSP was not found for the LSP.

The file has been closed (OCWRITE = 67).

Output priority must be in the 0 to 127 range.

This result is reserved.

This result is reserved.

This result is reserved.

Not in network mode.

Attach not valid for the local station.

Connect to local host not valid.

Invalid BNA station.

The station transfer MCS could not be initiated.

The type of OCWRITE attempted cannot be performed on a
pseudostation.

The type of DCWRITE attempted can be performed only on
pseudostations.

The station already has a fully participating MCS.

The station does not have a fully participating MCS.

The type of OCWRITE attempted can be performed only by a fully
participating MCS.

All pseudostations are in use.

A switched line cannot be swapped with a nonswitched line.

A bit-oriented line cannot be swapped with a character-oriented line.

The original DCWRITE type supplied in the message is incompatible with
the result type.

The OOT unit number given is not a valid ODT unit number.

The transfer of a pseudostation to represent a system OOT unit is
permitted only by COMS/OOT /ORIVER.

The pseudostation name is not properly formatted.

The pseudostation name is not unique.

The station could not be subtracted from the file specified in a
SUBTRACT STATION FROM FILE OCWRITE (Type = 69).

8600 0841-000

Pseudostations and Fully Participating MeSs

Pseu·dostations and Fully Participating MeSs

The data comm subsystem supports a general implementation of pseudostations,
and full participation of an MCS with transferred pseudostations. A
pseudostation can be allocated to an MCS by the operating system and the MCS
can then "participate" by interposing itself between a data comm program and
the pseudostation. Full participation allows an MCS to participate in data comm
functions, such as DCWRITE, performed on a transferred pseudostation.

The following sections describe the features of full participation and
pseudostations in greater detail. The message formats of the DCWRITE types
involved also detail the action or result of the data comm features.

Pseudostations

A pseudostation is a virtual station that can be attached to, and controlled by, an
MCS in a manner similar to a "real" station, that is, one declared in the
DATACOMINFO file. However, unlike a real station, a pseudostation is not
declared in the DA T ACOMINFO file, has no line assigned, and need not have a
corresponding physical terminal on the local host.

To an application program, a pseudostation looks like any other station. An MCS
can send messages to, and receive messages from, a pseudostation through the
standard data comm interface procedures. Other programs can open a remote file
to a pseudostation and use the READ and WRITE verbs in the various languages.
In addition, one MCS can transfer control of a pseudostation to another MCS and
can perform most DCWRITE functions that do not require physical line
assignment.

However, a pseudostation differs from a station defined in the DATACOMINFO
file in that it must h~ve an MCS that is ultimately responsible for performing
most DCWRITE functions. Usually, this MCS is the one that initially requested
allocation of the pseudostation. The operating system controls the allocation and
deallocation of pseudostations and knows which MCS is controlling each station
at any given time. However, the operating system has no knowledge of any
mapping from a pseudostation to a process, physical terminal, or other entity.
Such mappings must be made and maintained solely by an MCS.

Pseudostations are useful for applications that require some form of virtual .
terminal. capability, yet need to remain compatible with existing MCSs and
application programs. A pseudostation can be allocated by one MCS and
transferred to another, but the first MCS can still exercise control over the data
comm functions (such as DCWRITE) performed on the station (see the description
that follows on full participation). Thus, the corresponding station might be
located on a different host computer, but only the allocating MCS would need to
know that.

8600 0841-000 5-15

Pseudostations and Fully Participating MeSs

MCS Participation in Data Comm Functions (Full Participation)

5-16

The data comm subsystem offers a feature called "participation" under which an
MCS can interpose itself between a station and a process that has a dialogue
established with that station. That process need not be informed that the MCS is
actually participating in the dialogue. The MCS can simply provide editing,
translation, or message-switching services in a transparent manner.

The full participation feature allows an MCS to participate in the remote-file
operations and the data comm functions (such as DCWRITE) performed on a
station after control of that station has been transferred to another MCS. In the
following discussion of this feature, the MCS that transfers control of a station is
referred to as the fully participating MCS, and the MCS that receives control of
the transferred station is referred to as the controlling MCS.

Under full participation, as with remote-file participation, an MCS can provide
editing, translation, or message-switching services for messages directed to a
station. Full participation, however, currently applies only to pseudostations. An
error result is returned to an MCS if it requests full participation when it
transfers control of a station declared in the DAT ACOMINFO file to another MCS.

After full participation has been requested, the fully participating MCS receives
notification when the MCS that controls the station performs certain DCWRITE
functions on that station. The request messages from these DCWRITE functions
are intercepted and placed in the primary queue of the fully participating MCS.
That MCS can then perform some action that emulates the requested function or
can route the request to another process that controls a physical terminal. In any
event, the fully participating MCS must be capable of generating MCS result
messages and forwarding them to the controlling MCS .

. An MCS that elects to invoke full participation on a pseudostation must also be
capable of remote-file participation. Control of a pseudostation can be
transferred, with full participation requested, to any other MCS. The new
controlling MCS can then start a task that opens a remote file to the station. If
the new controlling MCS has not requested remote-file participation, the MCS that
has requested full participation must also perform remote-file participation in
order to successfully open a remote file. Because of the "virtual" nature of
pseudostations, the data comm subsystem requires a destination to send messages
written to the file and to fulfill the requests of the task to read from the file.

In the case just described, the fully participating MCS receives the OBJECT JOB
OUTPUT (Class = 3) result messages that would otherwise have been given to an
MCS that requested remote-file participation. In addition, the fully participating
MCS is responsible for generating ·WRITE TO OBJECT JOB (Type = 65)

. DCWRITE messages to satisfy READ requests performed by the task that has
opened the remote file.

8600 0841-000

Specific DCWRITE Information

Specific DCWRITE Information
The individual DC WRITE types are discussed in the information that follows. At
least one example is included with the description of each DCWRITE type.

The descriptions of the specific DCWRITE types are subdivided into the following
topics:

• Required Parameters/Fields

• Explanation

• Examples

For all examples, the following declarations are assumed:

MESSAGE MSG,MSGl;
QUEUE PRIMARYQ,CURRENTQ,INFOQUE;
INTEGER RESULT,MCSNR,LSN,NSPNR,LINENR,STANR,FRSN,APPLNO;
INTEGER FILENR,DL,LSPMASK,TESTNR;

INITIALIZE PRIMARY QUEUE (DCWRITE Type - 0)

Required Parameters/Fields

The message parameter and the queue parameter are required, along with the
following:

Word Field Value Description

o [47:08] o Type

Explanation

The primary queue is the first communication link established between an MCS
and the data comm portion of the operating system. This communication link
distinguishes an MCS from other DCALGOL programs. Therefore, when a
DCALGOL program executes an INITIALIZE PRIMARY QUEUE DCWRITE
function in an attempt to establish the desired link, several checks are made to
guarantee the legitimacy of the DCALGOL program to become an MCS~ These
checks are as follows:

• The title of the DCALGOL program must be one of those referenced as the
title of an MCS in the DATACOMINFO file.

• The DCALGOL program must not already be running under another job
number as an MCS.

• Normally, if an MCS is not running when it is required, the MCS is initiated
by the DCC; if neither the MCS nor the DCC is running, both are initiated if
the AUTODC option is equal to TRUE. However, if the MCS is a procedure
with formal parameters, the attempt by the DCC to initiate the MCS

8600 0841-000 5-17

INITIALIZE PRIMARY QUEUE (DCWRITE Type = 0)

5-18

terminates abnormally with a parameter mismatch. Thus, the only way such
MCSs can be initiated is through a run invocation by another program or a
RUN control card where the parameters can be correctly supplied.

The INITIALIZE PRIMARY QUEUE DCWRITE function must be performed once
(and only once) during the course'of the existence of the MCS in the system job
mix (preferably as one of the first things the MCS accomplishes). The first
DCWRITE function performed by the MeS must be an INITIALIZE PRIMARY
QUEUE DCWRITE function.

In an NDLII source program, the title of an MCS is associated with each station
defined in the source program by designating the MCS station attribute. When
data comm is initialized, the operating system assigns MCS numbers sequentially
based on the order in which stations are, examined in the DATACOMINFO file.
The operating system examines each station starting with the first station on the
first line of the first LSP of the first NSP. This process continues until all stations
of every LSP and NSP have been examined. Stations not assigned to a line are
then examined.

The minimum acceptable message size for t~is DCWRITE type is six words. The
message is non-null on return from the DCWRITE function. MSG[O) remains
unaltered. The functional value returned for the DCWRITE function is 0 if the
primary queue is initialized. In this case, MSG[l) contains the MCS number and
MSG(2) contains the value of the maximum logical station number (LSN), as
determined from the DATACOMINFO file in [23:24), and the number of schedule
stations available for use in [47:08). The level of the SOURCENDLII from which
the DATACOMINFO file was originally created is in MSG(3). This word is defined
as follows:

MSG[3].[35:12] = Mark level
MSG[3].[23:12] = Cycle number
MSG[3].[11:12] = Patch number

MSG[4] contains the maximum number of pseudostations. In addition, the name of
the current data comm file prefix is placed in EBCDIC starting in MSG[6] in
external standard form, and the length of the file prefix (in number of
characters) is stored in the text size field (MSG[2].[39:16]). The queue designator
supplied as the queue parameter is activated and references the primary queue.
The DAT ACOMINFO TIMESTAMP attribute is returned as a real value in MSG[11]
and is interpreted as follows: ,

MSG[1l].[47:24] = Date as IIMMDDYY II
MSG[1l].[23:24] = Time as "HHMMSS II

c

The length of the longest data comm message allowed is ret:urned in MSG[12].
Before determining the value of this word the program should first check that the
message returned is at least 13 words long, because previous versions of the
operating system returned a message 12 words long.

8600 0841-000

INITIALIZE PRIMARY QUEUE (DCWRITE Type ='0)

Nonzero functional values are returned if the primary queue is not initialized.

Value Description

64 The message parameter is null.

66 The calling DCALGOL program is not named as an MCS in the current
DATACOMINFO file.

67 The queue parameter is not supplied.

73 The message parameter supplied does not meet the minimum size
required.

74 The INITIALIZE PRIMARY QUEUE DCWRITE was previously executed.

75 The data comm subsystem is not initialized (AUTO DC is equal to FALSE
or the data comm subsystem files are not on disk).

105 The MCS is already in execution.

Example

ALLOCATE(MSG,6);
MSG[O].[47:08] := 0;
RESULT := DCWRITE(MSG,PRIMARYQ);
MCSNR := MSG[l];

8600 0841-000 5-19

STATION ATTACH (DCWRITE Type - 1)

STATION ATTACH (DCWRITE Type - 1)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 1 Type.

[32:01] 0 Reserved for use by SYSTEM/COMS.

[31:01] 0 Regular station attach: The MCS provides
either the DLS number, LSN, or station name.

1 Allocate pseudostation: The MCS gets the LSN
and station name from the operating system.
The DLS number does not apply to
pseudostations.

[29:06] Variant field (description follows):

[29:01] 0 If a station is assigned to the file of an object
job, all input from that station is sent directly
to the file port and all output from the file port
is sent directly to the station without
intervention required by the MCS.

1 If a station is assigned to the file of an object
job, all input from that station is sent directly
to the file port and all output from the file port
is sent to the current queue of the station.

[28:01] 0 All STATION EVENT (Class = 1) messages,
exclusive of the control message, are placed in
the primary queue of the controlling MCS.

1 All STATION EVENT (Class = 1) messages,
exclusive of the control message, are placed in
the current queue of the station.

[27:01] 0 All NOT READY results are placed in the
primary queue.

1 All NOT READY results are placed in the
current queue of the station.

[26:01] 0 All control messages from the station are
placed in the primary queue of the controlling
MCS.

1 All control messages from the station are
placed in the current queue of the station.
Control messages are messages from a station
that contains the control character of that
station (as set forth in the DATACOMINFO file
or allocated by the MCS).

continued

5-20 8600 0841-000

Word

Explanation

Field

[25:01]

[24:01]

[23:24]

[23:01]

Value

o

STATION ATTACH (DCWRITE Type = 1)

Description

All ERROR RESULT (Class = 99) messages
for the station are placed in the primary queue
of the controlling MCS.

1 All ERROR RESULT (Class = 99) messages
for the station are placed in the current queue
of the station.

o All GOOD RESULTS (Class = 5) messages,
except any for NULL STATION REQUEST
(DCWRITE Type = 48), DCWRITE and all
LINE CHANGE RESULT (Class = 9) messages
for the station, are discarded.

1 All GOOD RESULTS (Class = 5) messages
and all LINE STATUS CHANGE RESULT
(Class = 9) messages for the station are
placed in the current queue of the station.

o
LSN-FRSN-DLS field (description follows):

If MSG[0].[22:23] is not 0, then MSG
[0].[22:23] designates the LSN.

1 MSG[0].[22:23] contains the relative NSP, line,
and station number (DLS number). Also, if
MSG[0].[23:24] = 0, then the station name
(as given in the DATACOMINFO file) in display
form (for example, nv JONE) is contained in
MSG[6], the text portion of the message.

One of the mechanisms through which an MCS can gain control of a station is the
STATION ATTACH DCWRITE function (refer also to "STATION EVENT Class ::;::
I" and "FILE OPEN Class = 2" messages in the "MCS Result Message Formats"
section). The MCS is allowed to use the physical location of the station (DLS
number), the name of the station (as declared in the DATACOMINFO file of the
installation), or its logical station number (LSN). In any case, the STATION
A TT ACH DCWRITE function verifies that the calling MCS is the one named in the
DAT ACOMINFO file for that station or that control of the station has been passed
to the MCS by another MCS through use of the TRANSFER STATION CONTROL
(DCWRITE Type = 45) DCWRITE function.

When using a DLS number for attachment, the relative NSP number must appear
in MSG[O].[22:07], the line number in MSG[O].[15:08], and the station number in
MSG[O].[07:08]. MSG[O].[23:01] must equal 1 so that the DCWRITE routine
understands that attachment is being performed with a DLS number.

Attachment by station name is accomplished by ensuring that MSG[O].[23:24]
equals 0 and that the station name in external standard form is placed as text in
the allocated message, starting at MSG[6]. Use of station attachment by name (or

8600 0841-000 5-21

· STATION ATTACH (OCWRITE Type = 1)

5-22

by LSN) removes the necessity for the MCS to know about the physical location
of the station.

The station is not required to have a line assignment if attachment is performed
by LSN or station name.

On exit from the DCWRITE routine, the message is non-null and MSG[0).[22:23)
contains the LSN if no errors occurred. The LSN must be used by the MCS for all
further DCWRITE calls that affect or reference that station except for two cases
in which the file relative station number (FRSN) is used. (Refer to "STATION
ASSIGNMENT TO FILE (DCWRITE Type = 64)" and "WRITE TO OBJECT JOB
(DCWRITE Type = 65)" in this section.) MSG[I).[23:24) contains the DLS
number. MSG[I).[31:08) contains switched status for theline with which the
station is associated. (Refer to the discussion of the "SWITCHED STATUS
RESULT (Class = 7)" message in the" MCS Result Message Formats" section).
The remainder of the message has the format of an INTERROGATE STATION
ENVIRONMENT (Class = 15) result and returns station, terminal, and line
information, plus the station name.

If the station for which attachment is desired does not belong to the calling MCS
or if the station is currently controlled by another MCS, the value returned by the
DCWRITE intrinsic function is 69. At this point, the calling MCS must perform an
INTER-MCS COMMUNICATE CDC WRITE Type = 3) DCWRITE function
requesting the other MCS to relinquish or allow control of that station to the
calling MCS. If the name or number of the controlling MCS is unknown, it can be
obtained through use of the INTERROGATE STATION ENVIRONMENT
(DCWRITE Type = 4) DCWRITE function.

GOOD INPUT RECEIVED (Class = 0) messages from a station go to the current
queue of the station. Disposition of other kinds of results is controlled by the
variant field specified in MSG[0).[29:06].

The STATION ATTACH DCWRITE function makes the current queue of the
attached station point to the primary queue of the MCS. (Refer to "CHANGE
CURRENT QUEUE (DCWRITE Type = 32)" in this section.)

The minimum message size required for this function is six words if attachment
by DLS number or LSN is being performed; seven words (or some additional
number of words sufficient to contain the station name) are required if
attachment by station name is being performed.

The STATION ATTACH DCWRITE function can be used by an MCS to request
allocation of a pseudostation from the pseudostation pool. This is designated by
giving MSG[0].[31:01) the value 1.

When an MCS requests allocation of a pseudostation (that is, MSG[0].[31:01) = 1),
MSG[0].[23:24) is jgnored. Usually, this field is used by an MCS to designate (by
name, LSN, or DLS number) which station it elects to attach. An MCS cannot
determine the name or LSN of a pseudostation before it is allocated.
Pseudostations do not have DLS numbers.

8600 0841-000

STATION ATTACH (DCWRITE Type = 1)

Upon exiting the DCWRITE routine, if no errors occurred, MSG[O].[22:23] contains
the LSN of the pseudostation that has been assigned to the requesting MCS. The.
rest of the message also has the same format as the result message of a regular
STATION ATTACH request (that i~, it has the format of an INTERROGATE
STATION ENVIRONMENT result message).

If all pseudostations in the pool have previously been allocated, a DCWRITE error
is returned.

The STATION ATTACH DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Examples

ALLOCATE(MSG,6);
MSG[O] := 0 & 1 [47:8] & 1 [23:1] & NSPNR [22:7]

& LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);
LSN := MSG[O].[22:23];

ALLOCATE(MSG,8);
MSG[O] := 0 & 1 [47:8] & 63 [29:6];
REPLACE POINTER(MSG[6],8) BY "TTY/ONE.";
RESULT := DCWRITE(MSG);
LSN := MSG[O].[22:23];

8600 0841-000 5-23

INTERROGATEMCS (DCWRITE Type = 2)

INTERROGATE MCS (DCWRITE Type - 2)

Indexing

5-24

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[23:24]

Value

2

not 0

o

Description

Type.

The field is assumed to be an MCS number
(MCS numbers are values in the range 1
through N inclusive, where N depends on
the number of unique MCSs identified in a
given DATACOMINFO file.

The MCS name is assumed to start in
MSG[6]. Six EBCDIC characters per word
are in external standard form (for example,
SYSTEM/CANOE).

The INTERROGATE MCS DCWRITE function allows an MCS access to certain
information concerning any other MeSs in the data comm environment.

The information returned is largely status information, that informs the
interrogating MCS of, at least, the following:

• Whether the MCS in question was initiated or is in execution

• If being executed, the mix number of the MCS

• Whether or not the MCS was discontinued with the DS system command

• The MCS number

• The name of the MCS

The result of an MCS INTERROGATE function call appears in the message
variable that was passed as a parameter to the DCWRITE intrinsic. The same
general format as that for the INTERROGATE STATION ENVIRONMENT
RESUL T is used with an expanded message format so that the MCS can request
additional information with minimal effort.

Figure 5-1 illustrates the path through index words to obtain additional MeS
information.

Word 6 of INTERROGATE MeS holds the index to the first word of the first
entry of this message. This first word is referenced as the index word, MSG[INX],
in the diagram and in the message format. MSG[INX] holds the indexes to several

8600 0841-000

MSG [0] - MSG [6]

INTERROGATE MCS (DCWRITE Type = 2)

[07:08]
---------------~-------~-----~-----~~~~--------,----

Size of
message

Number of
entries in
message

Index to
1st word
1st entry

I

r--------...J

[23:08]

Index to
1st word
ofMCS
name

I
I

Contains
the MCS

name

[15:08]

Index to
1st word
ofMCS

information

I
I

Contains
MCS status

and
information

[07:08]

Index to
1st word
of next
entry

cg]
1 ~~::v

First
Word

Figure 5-1. INTERROGATE MCS Index Diagram

first words of MeS information, the name, or the index to the first word of the
next entry. The bit fields of the words referenced by the indexes provide details
of status and information requested. They are listed in the following message
format:

Word Field Description

0-5 Appear as originally presented to the
DCWRITE function

6 [23:08] Contains the total size of this message
(in words)

[15:08] Contains the number of entries in this
message

[07:08] Contains the index to the first word of
the first entry

8600 0841-000 5-25

INTERROGATE MCS (DCWRITE Type = 2)

MSG[INX] := MSG[6].[07:08]

This field is as follows:

Word Field

[INX] [47:08]

[23:08]

[15:08]

Description

Contains the index to the first word of the next entry (0
indicates that this entry is the last entry)

Contains· the index to the first word of the MCS name (this
entry)

Contains the index to the first word of MCS information
(this entry)

MSG[MSG[I NX]. [23:08]]

This field contains the first six EBCDIC characters (or less) of the MCS name in
external standard form (carrying over into successive words, if necessary) and
ends with a period.

MSG[MSG[INX].[15:08)]

5-26

This field is the first word of MCS information and is as follows:

Field Value Description

[47:01] 1 The MCS has diagnostic capabilities.

[46:01] 1 The MCS is initiated/running.

[46:01] 0 The MCS was discontinued with the OS system command
(abnormally terminated).

[45:01] 1 The MCS was discontinued with the OS system command
(abnormally terminated).

[44:01] 1 The MCS required message was displayed for this MCS.

[23:08] Contains the MCS number.

[15:16] not 0 The job serial number of MCS (mix number) is contained
in this word.

[15:16] 0 The MCS is not in execution.

A combined interpretation of the above fields yields the most meaningful
interpretations; the following list is a combined interpretation:

8600 0841-000

Field Value

[46:01] o

[45:01] o

[46:01] 1

[15: 16] 0

[46:01] 0

[45:01] 1

[46:01] 1

[15:16] not 0

INTERROGATE MCS (DCWRITE Type = 2)

Description

When both values are 0, the MCS is not
initiated/running/discontinued with the OS system
command.

When both values are 0, the MCS is not
initiated/running/discontinued with the OS system
command.

The the MCS was initiated but is not in execution (possibly
scheduled).

The MCS was initiated but is not in execution (possibly
scheduled).

The MCS was either discontinued with the OS command
or terminated abnormally.

The MCS was either discontinued with the OS command
or terminated abnormally.

The MCS is being executed and has initialized its primary
queue; its job serial number is in [15:16].

The MCS is being executed and has initialized its primary
queue; its job serial number is in [15: 16].

The format of this word remains the same for the first word of each ensuing
entry, if any.

Examples

The following example illustrates an INTERROGATE MCS in which the number of
the MCS is used for the reference:

ALLOCATE(MSG,6};
MSG[O] := MCSNR & 2 [47:8];
RESULT := OCWRITE(MSG};

The following example illustrates an INTERROGATE MCS in which the name of
the MCS is used for the reference:

ALLOCATE(MSG,9};
MSG[O] := 0 & 2 [47:8];
REPLACE POINTER(MSG[6],8} BY "SYSTEM/CANOE.";
RESULT := DCWRITE(MSG};

8600 0841-000 5-27

INTER·MCS COMMUNICATE (DCWRITE Type = 3)

INTER-MCS COMMUNICATE (DCWRITE Type - 3)

5-28

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 3 Type.

[39:16] Variant field (description follows):

[24:01] 0 No initiation is attempted.

1 The system automatically initiates the recipient
MCS if it is not currently initiated or running.

[23:24] MCS number of recipient MCS.

Explanation

The INTER-MCS COMMUNICATE DCWRITE function allows an MCS to establish
a communication link to any other MCS.

The calling MCS need only supply the MCS number of the recipient MCS. The MCS
number can be obtained through the invocation of the INTERROGATE MCS
(DCWRITE Type = 2) DCWRITE function that supplies the name of the desired
MCS.

The text portion of the message, if any, can contain any type of formatted
information that, through prior arrangement and convention, conveys or
represents meaningful information to the recipient MCS. No attempt is made to
act on or otherwise interpret the textual portion of these messages by the data
comm system.

A variant of this function is provided that allows· the calling MCS to cause
initiation of the recipient MCS in the event that the recipient is not initiated or
running at the time.

The recipient MeS receives the result of an INTER-MCS COMMUNICATE as a
message in its primary queue. (Refer to the "INTER-MCS COMMUNICATE
RESULT (Class = 13)" message in the "MCS Result Message Format" section for
format information.)

Example

ALLOCATE(MSG,8);
MSG[O] := MCSNR & 3 [47:8J & 1 [24:1];
REPLACE POINTER(MSG[6],8) BY "HERE I AM II;
MSG[2].[39:16] := 10;
RESULT := OCWRITE(MSG);

8600 0841-000

INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)

INTERROGATE STATION ENVIRONMENT (DCWRITE Type - 4)

Required Parameters/Fields

The minimum message length is seven words. A message parameter and the
following are required:

Word Field Value Description

0 [47:08] 4 Type.

[39:16] Variant field (description follows):

[31:01] 1 A terminal name is desired.

[30:01] 1 NSP station information is desired.

[29:01] 1 NSP"line information is desired.

[28:01] 1 A station" name is desired.

[27:01] 1 Line information is desired.

[26:01] 1 Terminal information is desired.

[25:01] 1 Station information is desired.

[24:01] 1 Return information for all stations under
control of calling MCS is desired.

0 Interrogate a specific station (see
LSN-FRSN-DLS field described directly below).

[23:24]

[23:01] 1

0

Optional Parameters/Fields

The queue parameter is optional.

8600 0841-000

LSN-FRSN-DLS field (only if [24:01] = 0) (a
description follows):

MSG[O].[22:23] is assumed to be a DLS
number.

If MSG[0].[22:23] is not 0, then
MSG[0].[22:23] is an LSN. If MSG[0].[22:23]
= 0, then MSG[6] is assumed to be the first
word of a station name expressed in external
display form (for example "TWXO. ") with six
EBCDIC characters per word.

5-29

INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)

5-30

If only line information is desired, the DLS number (NSP in line) is the only
required parameter; this information is as follows:

Word

o

Field

[23:01]

[22:07]

[15:08]

Value

1

Description

,Only line information is desired.

Relative NSP number.

Line number; the line number equals the
relative LSP number times 16 plus the adapter
number.

In this case, either of the corresponding bits for NSP [29:01] and/or DCC [27:01]
information can be turned on in the variant field; the information is returned.

Explanation

The INTERROGATE STATION ENVIRONMENT DCWRITE function enables an
MCS to gain access to certain information concerning the stations that are
described in a data comm configuration. '

The general flexibility of this function affords an MCS one or more of the
following:

• Access to station information (logical attributes) such as the specified retry
count, control character, and so forth, of the station.

• Access to terminal information (physical attributes) such as the terminal
width, page size, terminal type (a screen device or not), and so forth, of the
station.

• Access to line information concerning the line with which the station is
associated (for example, whether or not the line is switched and, if it is,
whether or not it is connected), and so forth.

• Access to the name of the station.

• Access to the above items either for a specific station or for all stations
currently under control of the calling MeS.

• Access to station information that indicates whether or not a station is a
pseudostation. It also indicates whether or not the station currently has a
fully participating MCS.

• Optional designation of a queue into which the desired information is to be
. inserted.

The variant field (MSG[0).[39:16]) contains the MCS-specified options that
determine the type or types of information to be returned. A special bit ([24:01])
is set aside to be used to designate whether the desired information (designated
by the remaining bits in the variant field) is to be returned for one specific
station or for all stations currently under control of the calling MCS.

8600 0841-000

INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)

The result information can be returned in the message parameter, placed in the
primary queue of the MCS, or placed in the optional queue parameter. When
results are placed in a queue, word 6 of the message parameter to the DCWRITE
function equals the number of stations for which information was inserted in the
queue. All result messages placed in the queue have the format of an
INTERROGATE STATION ENVIRONMENT RESULT (Class = 15).

If MSG[0].[24:01] is 0 (interrogate a specific station), the result is returned by the
message parameter that was supplied for the call on the DCWRITE function,
unless a queue parameter was supplied for the call on the DCWRITE function.
(The size of the message on return from the DCWRITE routine might not
necessarily be the size of the originally supplied message.) If a queue parameter
was supplied for the call on the DCWRITE function, the result is inserted in that
queue, activating the queue if necessary. In the case of interrogation of a specific
station, the calling MCS can be an MCS other than the controlling MCS.

If MSG[0].[24:01] is 1 (interrogate all stations for the MCS), the result is placed, as
one or more messages (Class = 15), in the primary queue of the MCS unless a
queue parameter was supplied for the call on the DCWRITE function. The result
messages are inserted in the queue, which activates the queue if necessary.

If MSG[0].[39:15] is not equal to 0, the type of information is determined
according to which bits are turned on. That is, if a given bit is turned on, the
information associated with the meaning of the bit is returned for the
interrogated station. These bits can be used in any combination desired. Requests
that call for the return of station names should be judiciously invoked because at
least one disk access is required for each station name retrieved.

If MSG[0].[39:15] is 0, then by default, only station information is returned. That
is, making MSG[0].[39:15] equal to 0 is identically equivalent to making
MSG[0].[25:01] equal to 1 and MSG[0].[39:14] equal to O.

Additionally, if an MCS issues a blanket interrogation and has no station
assigned, no Class = 15 messages are returned, and MSG[6] contains 0 to indicate
this.

The INTERROGATE STATION ENVIRONMENT DCWRITE function executes in
series rather than in parallel with the execution of the calling MCS. Frequent
calls on the function, particularly for the purpose of performing blanket
interrogations (MSG[O].[24:01] = 1) are not recommended and could significantly
impair the total throughput capability of an MCS.

Examples

The following example illustrates an interrogate invocation that returns the
station, terminal, and line information for a specific station whose name is
"A/B.". The interrogate result appears in the message parameter that was passed
to the DCWRITE intrinsic.

8600 0841-000 5-31

INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4)

5-32

ALLOCATE{MSG,7);
MSG[O] := 0 & 4 [47:8] & 1 [25:1]

& 1 [26:1] & 1 [27:1];
REPLACE POINTER{MSG[6],8) BY "A/B.";
RESULT := DCWRITE(MSG);;

The following example illustrates a blanket interrogate invocation that returns
the station, terminal, and line information as well as the name for each of the
stations under the control of the calling MeS. Interrogation result messages are
returned by a queue declared as INFOQUE.

ALLOCATE{MSG,7);
MSG[O] := 0 & 4 [47:8] & 31 [39:16];
RESULT := DCWRITE{MSG,INFOQUE);

8600 0841-000

ATTACH SCHEDULE STATION (DCWRITE Type = 5)

ATTACH SCHEDULE STATION (DCWRITE Type - 5)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

o [47:08] 5 Type

Explanation

Schedule stations have no predefined MCS assignment and are available for use
: by any MCS. Before using a schedule station, the MCS must explicitly attach the

station. Briefly, a schedule station is defined to have the following attributes:

• A schedule station has no line assignment.

• A schedule station has no predefined, dedicated MCS assignment.

• When used for a remote input (or I/O) file, the controlling MCS must
participate in all I/O operations. Additionally, when an object job requests
input from a·schedule station, a message is sent to the controlling MCS to
request that input be sent to the remote file.

After the call on the DCWRITE routine, MSG[0].[23:24] contains the LSN of the
assigned schedule station. The LSN is 0 if no schedule stations are available,
which indicates that all such stations . are currently assigned.

Attachment of a schedule station implicitly turns on the MCS PARTICIPATES
option (normally bit [39:01] in the variant field) for the station.

An attached schedule station can be detached (and thereby returned to the
system for subsequent assignment to an MCS) by the STATION DETACH
(DCWRITE Type = 42) DCWRITE function.

Any DCWRITE functions permissible for stations without a line assignment are
allowed for schedule stations, with the following exceptions:

• A schedule station cannot be assigned to a line by a reconfiguration request.
Attempting to do so results in DCWRITE error 138 (SCHEDULE STATION
MAY NOT HAVE LINE ASSIGNMENT).

• A schedule station cannot be transferred to another MCS. Attempting to do so
results in DCWRITE error 139 (SCHEDULE STATION MAY NOT BE
TRANSFERRED).

• A schedule station cannot be added to a file by an ADD STATION TO FILE
(DCWRITE Type = 67) DCWRITE function. Attempting to do so results in
DCWRITE error 140 (SCHEDULE STATION MAY NOT BE ADDED TO A
FILE).

8600 0841-000 5-33

ATTACH SCHEDULE STATION (DCWRITE Type = 5)

When a STATION INTERROGATE CDCWRITE Type = 4) DCWRITE function is
performed for a schedule station, the following pertinent information is 'returned,
if requested:

Station Information

Information

Enabled

MCS number

Width

Terminal Information

Information

Screen

In/out

Width

Maximum input

Page size

Maximum output

Value

TRUE

Number of the current controlling MCS
(0 if not currently assigned to an MCS)

72

Value

FALSE

3 (I/O)

72

72

0

72

In addition, the name of any interrogated schedule station is of the form
SCHED#nnn where nnn is the sequential number of the station, beginning at 1.
Because schedule stations are not explicitly declared in the DAT ACOMINFO file,
attempting to interrogate a schedule station by name results in the station not
being found.

When a schedule station is assigned to a remote file, the following restrictions
apply:

• The controlling MCS must participate in I/O.

• A schedule station cannot be a member of a multistation file.

• Only one input or input/output file can be assigned to a schedule station at a
time.

5-34 86000841-000

ATTACH SCHEDULE STATION (DCWRITE Type = 5)

Example

ALLOCATE(MSG~6);

MSG[O] := 0 & 5 [47:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-35

CHANGE CURRENT QUEUE (DCWRITE Type = 32)

CHANGE CURRENT QUEUE (DCWRITE Type - 32)

5-36

Required Parameters/Fields

A message parameter, a queue parameter, and the following are required:

Word

o

2

6 to end

. Explanation

Field

[47:08]

[29:06]

[23:24]

[39:16]

Value

32

Description

Type.

Variant, as detailed in the
STATION ATTACH (DCWRITE
Type = 1) DCWRITE.

LSN or DLS number.

If text is to be transmitted to
the station, this field must
contain a byte count.

Optional text .

By default, all messages pertaining to a station are returned in the primary queue
of the MCS. (The primary queue of the MCS is established through the
INITIALIZE PRIMARY QUEUE (DCWRITE Type = 0) DCWRITE function.)

An MCS can elect (optionally) to have all station-related messages other than
errors placed in a different queue through use of the CHANGE CURRENT QUEUE
DCWRITE function.

By using the variant bits with this DCWRITE type, the controlling MCS is allowed
to override the set of default options as outlined in the STATION ATTACH
(DCWRITE Type = 1) DCWRITE function.

If MSG[2].[39:16] is not equal to 0, on completing the CHANGE CURRENT QUEUE
task, 'the DCWRITE routine attempts to send the textual portion of the message,
subject to any constraints imposed by the WRITE (DCWRITE Type =33)'
DCWRITE function. After the bit values in the variant field have been noted, the
variant field is zeroed so that no Gonflict exists with the variant field of the
WRITE (DCWRITE Type = 33) DC WRITE function, which this DCWRITE function
now simulates. Also, the type field is changed to the value 33 before placing this
message in the request queue of the appropriate NSP. Thus, in this case, the
original DCWRITE type field (MSG[4].[23:24]) in either the GOOD RESULT
(Class = 5) message or the ERROR RESULT (Class = 99) message contains the
value 33 rather than the value 32.·If no text is to be written to the station, the
GOOD RESULT message returns the original DCWRITE type value of 32.

On exit from the DCWRITE routine (if all operations were successful and proper),
the message is null. If the only objective of the MCS is to change default options
(the station-related messages are to continue being placed into the primary queue

8600 0841 ;...000

CHANGE CURRENT QUEUE (DCWRITE Type = 32)

or a previously established current queue), then the desired options can be turned
on or off by naming the queue, which is now in use, as the queue parameter.

If the queue parameter that was passed is inactive, the CHANGE CURRENT
QUEUE DCWRITE function activates the queue.

You ,must supply the LSN or DLS number for the station for this DCWRITE call.

The station specified by LSN does not require a line assignment; however, if text
size is not zero and the station has no line assignment, error 88 is returned.

The CHANGE CURRENT QUEUE DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

Example

ALLOCATE(MSG,13);
MSG[O] := LSN & 32 [47:8] & 1 [25: 1];
REPLACE POINTER(MSG[6],8) BY

lIyOU ARE ON-LINE TO SYSTEM D. II;
MSG[2].[39:16] := 37;
RESULT := DCWRITE(MSG,CURRENTQ);

8600 0841-000 5-37

WRITE (DCWRITE Type = 33)

WRITE (DCWRITE Type = 33)

5-38

Required Parameters/Fields

A message parameter and the following ar~required:

Word Field

0 [47:08]

[39:16]

[39:08]

[31 :01]

[30:01]

[29:01]

[28:01]

[27:01]

[26:01]

[25:01]

[24:01]

[23:24]

1 [46:07]

2 [39:16]

4 [47:24]

6 to end

Explanation

Value Description

33 Type.

Carriage control fields (description follows):

The channel number to skip to or the number
of lines to skip (NOLII SKIPCOUNT).

1 The tabulation to be done (NOLII TAB).

1 Carriage control should be done before text is
transmitted (NOLII MOTIONBEFORE).

1 More blocks to follow this one (NOLII
BLOCKED).

1 The value stored in MSG[0].[39:08] is the
number of vertical lines that should be skipped
(NOLII SPACE).

1

1

1

1

The value stored in MSG[0].[39:08] is the
channel number to skip to (NOLII SKIPLlNE).

A new page is required for the output device
(NOLII NEWPAGE).

Carriage return is suppressed (NOLII
NOCARRIAGERETURN).

line feed is suppressed (NOLII NOLINEFEEO).

LSN or DLS number.

Priority of output.

Text size field.

The message number field or, optionally, the
file relative station number (FRSN).

Optional text (If text is to be transmitted to the
station, a byte count must be supplied in the
text size field MSG[2].[39: 16]).

The WRITE DCWRITE function allows output to be sent to the station indicated
by the supplied LSN or DLS number. Carriage control is performed as specified
by the variant-field bits if it is implemented in the NDLII algorithm and editor
request of the station. If the text size field CMSG[2].[39:16]) is 0, only the carriage
control is affected. If the text size field is greater than Q, the text is written to
the station.

8600 0841-000

WRITE (DCWRITE Type = 33)

MSG[I].[46:07] contains the priority of the message. If this field is not zero, the
DCC inserts the message into the station queue after any other messages of
higher or equal priority but before messages of lower priority. In this way, an
MCS causes messages to be transmitted in a different sequence from that given to
the DCC. The MCS can produce 128 different levels of priority, with 0 the lowest
priority and 127 the highest priority.

Field MSG[4].[47:24] is the message number field. An MCS can elect to assign
message numbers to all messages that it allocates in the system, thus providing
some ability to audit the flow of its messages in the system. The software system
preserves the integrity of this field and does not use it for other purposes. If the
MCS receives an OBJECT JOB OUTPUT (Class = 3) message, this field contains
the FRSN. The MCS can elect to forward this message to the intended station by
using the WRITE DCWRITE function without altering this field. In this case, the
LSN or DLS number is still required. The FRSN that this field would contain
could be useful to the MCS itself in identifying the file from which the message
originated when the MCS is participating in I/O for the station and does a
RECALL MESSAGE (DCWRITE Type = 41) DCWRITE function.

The WRITE DCWRITE function is intercepted when performed on a pseudo station
that has a fully participating MCS. The DCWRITE function must be performed by
the MCS that currently controls the station. The intercepted messages are placed
in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,9);
MSG[O] := LSN & 33 [47:8] & 1 [26:1];
MSG[2].[39:16] := 14;
REPLACE POINTER(MSG[6],8) BY IITHIS IS OUTPUT II ;
RESULT := DCWRITE(MSG);

8600 0841-000 5-39

READ·ONCE ONLY (DCWRITE Type = 34)

READ-ONCE ONLY (DCWRITE Type - 34)

5-40

Required Parameters/Fields

The minimum message size· for the READ-ONCE ONLY DCWRITE function is
seven words. A message parameter and the following are required:

Word

o

2

6 to
5+N

Explanation

Field

[47:08]

[23:24]

[39:16]

Value

34

Description

Type.

LSN orDLS number.

Number of bytes of text area available for
accumulating input.

A number of words of text area, where N must
satisfy N > (MSG[2].[39: 16] + 5) DIV 6.

The READ-ONCE ONLY DCWRITE function allows an MCS to request the NSP to
accept an input for the station indicated by the LSN or DLS number. The main
purpose of this DCWRITE type is to ease the transition from NDL (DCP-based)
systems to NDLII (NSP-based) systems.

The first spontaneous input from the station satisfies the READ-ONCE ONLY
DCWRITE function. When accumulating input from the station for this particular
read, the number of bytes indicated in MSG[2].[39: 16] is collected arid returned. If
the station sends more characters than indicated in this size field, the extra
characters are ignored. The station must be enabled for input to satisfy the
READ-ONCE ONLY DCWRITE request. After this request is satisfied, subsequent
inputs are handled as spontaneous inputs of varying sizes.

The READ-ONCE ONLY DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,21);
MSG[O] := LSN & 34 [47:8];
MSG[2].[39:16] := (21-6)*6;
RESULT := DCWRITE(MSG);

8600 0841-000

ENABLE INPUT (DCWRITE Type = 35)

ENABLE INPUT (DCWRITE Type - 35)

Required Parameters jFields

A message parameter and the following are required:

Word Field Value Description

o 35 Type.

Variant field (description follows):

[47:08]

[39:16]

[31:08] Value to be stored in the NOLII variable
STATION.FREQUENCY. Making this field equal
to 255 causes STATION.FREQUENCY to have
the default value designated in the
OATACOMINFO file.

[23:24] LSN or OLS number.

Explanation

The ENABLE INPUT DCWRITE function causes the NDLII variable
STATION. ENABLED to equal TRUE, and the value of MSG[O].[31:8] to be stored
into the NDLII variable STATION .FREQUENCY. The initial value of
STATION. ENABLED is determined from the DATACOMINFO file. Thereafter,
only the ENABLE INPUT DCWRITE function can turn on STATION .ENABLED
and only the DISABLE INPUT (DCWRITE Type = 36) DCWRITE function can
turn off STATION.ENABLED. Unless STATION.ENABLED is turned on or an
outstanding read request exists (READ-ONCE ONLY (DCWRITE Type = 34)
DCWRITE) at the head of the station request queue, no input from the station can
be received.

When an NDLII algorithm performs a SENDHOST INPUT, the input message is
either routed to the controlling MCS, or routed to an object job if the station is
attached to a file, no errors are encountered, the input does not constitute a
station event (for example, WRU character received), and the MCS is not
participating in object job I/O. The NDLII algorithm has the responsibility for
ensuring that input is received whenever the station is enabled and READY.

An NDLII algorithm can use STATION FREQUENCY in any way it is written.
However, the intended use of the variable is to influence the rate at which a
station is polled.

The ENABLE INPUT DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

8600 0841-000 5-41

ENABLE INPUT (DCWRITEType = 35)

5-42

Example

ALLOCATE{MSG,6);
MSG[O] := LSN & 35 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000

DISABLE INPUT (DCWRITE Type = 36)

DISABLE INPUT (DCWRITE Type - 36)

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[23:24]

Value

36

Description

Type.

LSN or DLS number ..

The DISABLE INPUT DCWRITE function is the opposite of the· ENABLE INPUT
DCWRITE function. Following a DISABLE INPUT request, if the station is a
polled station, polling ceases. In any event, unless an outstanding READ request
exists, no subsequent input messages are received from the station.

The DISABLE INPUT DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[O] := LSN & 36 [47:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-43

MAKE STATION READY/NOT READY (DCWRITE Type = 37)

MAKE STATION READY/NOT READY (DCWRITE Type - 37)

5-44'

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 37 Type.

[39:16] 0 Make station NOT READY.

1 Make station READY.

[23:24] LSN or DLS number.

Explanation

The MAKE STATION READY/NOT READY DCWRITE function allows the MCS to
control the readiness of a station. For example, if a station is being polled
because of a READ-ONCE ONLY or ENABLE INPUT DCWRITE function and the
MCS desires to have polling or input temporarily suspended, it can issue a MAKE
STATION READY/NOT READY request with MSG[O].[39.:16] = O. The station, if
operating under an ENABLE INPUT DCWRITE function, ceases to be polled by
the NSP until a MAKE STATION READY/NOT READY request with
MSG[O].[39:16] = 1 is issued by 'the MCS.

Because of error recovery reqUirements, the MCS can be required to perform a
MAKE STATION READY/NOT READY request. Refer to "ERROR RESULT
(Class = 99)" in the "MCS Result Message Formats" section for messages that use
the line/station format. These errors cause the station to become NOT READY.

For example, if the result message from the NSP implies a station error, the MCS
must perform a MAKE STATION READY/NOT READY request with
MSG[O].[39:16] = 1. This action is required because the NSP makes a station NOT
READY if an irrecoverable error is encountered for a station. The execution of a
SENDHOST ERROR statement in an NDLII-written algorithm constitutes an
irrecoverable error situation. Making the station NOT READY allows the MCS to
decide whether to abandon all retry attempts or to allow the station another
chance.

If the LINE.BUSY variable is TRUE when a MAKE STATION NOT READY request
is issued, the request is deferred until LINE. BUSY is given the value FALSE in
the NDLII algorithm. The GOOD RESULT message is generated and delivered to
the MCS when the NOT READY action is performed.

The MAKE STATION READY/NOT READY DCWRITE function is intercepted
when performed on a pseudostation that has a fully participating MCS. The
DCWRITE function must be performed by the MCS that currently controls the
station. The intercepted messages are placed in the primary queue of the fully
participating MCS.

, 8600 0841-000

MAKE STATION READY/NOT READY (DCWRITE Type = 37)

Example

ALLOCATE{MSG,6);
MSG[O] := LSN & 37 [47:8] & 1 [39: 16];
RESULT := DCWRITE{MSG);

8600 0841-000 5-45

SET APPLICATION NUMBER (DCWRITE Type = 38)

SET APPLICATION NUMBER (DCWRITE Type - 38)

5-46

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value

38

Description

Type.

Application number (must be one of the
numbers designated for this section in the
DATACOMINFO file).

LSN or DLS number.

The SET APPLICATION NUMBER DCWRITE function allows the MCS to change
the editor that the NSP algorithms invoke for editing input and output for a
station indicated by the LSN or DLS number. The DCWRITE routine verifies 'that
the application number specified by the MCS is a legal and otherwise meaningful
value for the station.

The SET APPLICATION NUMBER DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

The SET APPLICATION NUMBER DCWRITE function causes a CHANGE
STATION EDITOR request to be issued to the NSP that uses the editor designated
for that application number in the application list. Application numbers are
associated with editors in the application list for the station. In addition, if an
EXTERNAL station variable called APPLICATION is declared in NDLII, a SET
EXTERNAL VARIABLE request is issued to the NSP to make
STATION .APPLICATION equal to the application number specified in the
DCWRITE request.

Example

ALLOCATE(MSG,6);
MSG[O] := lSN & 38 [47:8] & APPLNO [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000

SET CHARACTERS (DCWRITE Type = 39)

SET CHARACTERS (DCWRITE Type - 39)

Required Parameters/Fields

The minimum message size required for the SET CHARACTERS DCWRITE
function is seven words. A message parameter and the following are required:

Word

o

6

Explanation

Field

[47:08]

[31:08]

[32:01]

[23:24]

Value

39

o

Description

Type.

The control character is turned on.

1 The end of message character is turned on.

2 The backspace character is turned on.

3 The line delete character is turned on.

4 The address characters are turned on.

1 The character is reset to the default from the
DATACOMINFO file.

LSN or DLS number.

The character or characters, right-justified. If
address characters are to be turned on, then
MSG[6].[47:24] contains the receive address
characters, right-justified, and MSG[6].[23:24]
contains the transmit address characters,
right -j ustified.

The SET CHARACTERS DCWRITE function allows an MCS to change or restore
certain characters used for polling, end of message, backspacing, and so forth.
The NDLII algorithm must use these variables in order for them to have an effect.
The control character is always dynamic, and the address characters, if any, are
always changeable.

Rather than specifying a new value for the character, the MCS can request that
the character be restored to its initial value in the DAT ACOMINFO file by making
MSG[O].[32:01] equal to 1. In that case, MSG[6] does not contain the new value;
rather, it is obtained by reading the DATACOM INFO file station record.

The SET CHARACTERS DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

8600 0841-000 5-47

SET CHARACTERS (DCWRITE Type = 39)

5-48

Example

ALLOCATE(MSG,7);
MSG[O] := LSN & 39 [47:8] & 1 [31:8];
MSG[6] := 4"00";
RESULT := OCWRITE(MSG);

8600 0841-000

SET TRANSMISSION NUMBER (DCWRITE Type = 40)

SET TRANSMISSION NUMBER (DCWRITE Type - 40)

Required Parameters/Fields

The minimum message size required for the SET TRANSMISSION NUMBER
DCWRITE function is seven words. A message parameter and the following are
required:

Word

o

6

Explanation

Field

[47:08]

[25:01]

[24:01]

[23:24]

[47:24]

[23:24]

Value

40

1

1

Description

Type.

The transmit transmission number is turned
on.

The receive transmission number is turned on.

LSN or DLS number.

Transmit transmission number value (if it is to
be turned on).

Receive transmission number value (if it is to
be turned on).

The SET TRANSMISSION NUMBER DCWRITE function allows an MCS to
reinitialize the transmit or receive transmission number (or both) for a particular
station. The numbers must be represented as EBCDIC digits, and, for terminals
with transmission numbers of one or two digits in length, the numbers must be
placed, right-justified, in the appropriate fields.

The SET TRANSMISSION NUMBER DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

Example

ALLOCATE(MSG,7);
MSG[O] := LSN & 40 [47:8] & 1 [24:1];
MSG[6] := "000";
RESULT := DCWRITE(MSG);

8600 0841-000 5-49

RECALL MESSAGE (D.CWRITE Type = 41)

R·ECALL MESSAGE (DCWRITE Type - 41)

5-50

Required Parameters/Fields

The station or line must be in a NOT READY state. A DCWRITE result value of 84
is returned if the station is READY. A message parameter and the following are
required:

Word Field Value Description

0 [47:08] 41 Type.

[39: 16] 0 The first message is returned.

1 All messages are returned.

[23:24] LSN or DLS number.

Explanation

The RECALL MESSAGE DCWRITE function allows an MCS to request the NSP to
return either the first message or all messages in the station queue for a specific
station (LSN or DLS number). The station or line must be in a NOT READY state
at the time the request is made. Thus, the MCS must have explicitly requested
that the station be made NOT READY (with the MAKE STATION READY/NOT
READY DCWRITE function), or the station must be in a NOT READY state as the
result of a previous station or line error. If the MCS desires to have only the first
message in the station queue returned, then MSG[O].[39:16] must be equal to O. If
all messages in the station queue are to be returned, then MSG[O].[39:16] must be
equal to 1.

If the MCShas established that it is to receive all GOOD RESULTS (Class = 5)
messages through one of the following, then the MCS receives, in the current
queue of the station, a GOOD RESULTS (Class = 5) message acknowledging the
RECALL MESSAGE DCWRITE function:

• The variant field of the STATION ATTACH (DCWRITE Type = 1) DCWRITE
function

• The CHANGE CURRENT QUEUE cnCWRITE Type = 32) DCWRITE function

• The STATION ASSIGNMENT TO FILE (DCWRITE Type = 64) DCWRITE
function that it is to receive all GOOD RESULTS (Class = 5) messages

If no message was in the station queue, the GOOD RESULTS (Class = 5) message
contains a value of 0 in MSG[O].[39:16]. If any message was to return (and is
returned), the GOOD RESULTS (Class = 5) message contains a value of 1 in
MSG[O].[39:16] and the message is returned in the current queue of the station as
a RECALL MESSAGE (Class = 6) message. The original DCWRITE type and
variant are found in MSG[4].[23:24] of each returned message.

The RECALL MESSAGE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be

8600 0841-000

· RECALL MESSAGE (DCWRITE Type = 41)

performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[O] := LSN & 41 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000 5-51

STATION DETACH (DCWRITE Type = 42)

STATION DETACH (DCWRITE Type - 42)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 42 Type.

[39:16] 0 Detach station.

1 Retract pseudostation.

[23:24] LSN or DLS number.

Explanation

The STATION DETACH DCWRITE function allows an MCS to detach from a
station to which it is currently attached. The station is marked unattached and no
longer has a current or primary queue.

If the station i$ in use by a remote file when the detachment is requested,
DCWRITE error 82 is returned.

The STATION DETACH message can also be used by an MCS to detach a
pseudostation under the following conditions:

• If the MCS that issued the STATION DETACH DCWRITE request (or the
RETRACT PSEUDOSTATION request) is the one to which control of the
pseudostation had been transferred, the pseudostation is detached and
returned to the control of the allocating MCS. A TRANSFER STATION
CONTROL (Class 16) DCRESULT message is placed in the queue of the
allocating MCS.

• If the MCS that issued the STATION DETACH DCWRITE request is the same
one that originally allocated the pseudostation, the pseudostation is also
deallocated and returned to the pool of available pseudostations. If control of
the pseudostation has been transferred to another MCS, a DCP TERMINATED
(Class = 14) message is placed in the queue of that MeS, and any remote file
attached to the pseudostation receives a data comm I/O EOF message.

• The MCS that allocated the pseudostation can regain control of it by issuing a
RETRACT PSEUDOSTATION request (that is, a STATION DETACH DC WRITE
function with the field [39:16] equal to 1). The pseudostation is detached from
the controlling MCS and is returned to the control of the allocating MCS; a
DCP TERMINATED (Class = 14) message is placed in the queue of the
previous controlling MCS. If control of the pseudostation has been transferred
to another MCS, any remote file attached to the pseudo station receives a data
comm I/O EOF message. A TRANSFER STATION CONTROL (Class = 16)
message is placed in the queue of the allocating MCS to indicate that the
retraction of the pseudostation has been completed.

5-52 86000841-000

STATION DETACH (DCWRITE Type = 42)

• If the station was not transferred (that is, the MCS that issued the RETRACT
PSEUDOST ATION request is both the allocator and the controller, DCWRITE
error 70 (STATION IS ALREADY YOURS) is returned.

Example

ALLOCATE(MSG,6);
MSG[O] := LSN & 42 [47:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-53

SET/RESET LOGICALACK (DCWRITE Type = 43)

SET/RESET LOGICALACK (DCWRITE Type = 43)

5-54

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value Description

0 [47:08] 43 Type.

[24:01] 0 Turn off LOGICALACK.

1 Turn on LOGICALACK.

[23:24] LSN or DLS number.

Explanation

This DCWRITE type allows an MCS to modify the station variable INPUT ACTION
in the NSP, opting (or not) for the following action by the NSP. After input is
successfully received from the station, the execution of an NDLII SEND HOST
INPUT statement (if INPUT ACTION = SENDANDW AIT) delivers that input to
the system, with the TO BE ACKNOWLEDGED flag (MSG[1].[15:01]) turned on.
This input is in the form of the GOOD INPUT RECEIVED (Class = 0) message. All
further action is suspended on the line until an ACKNOWLEDGE (DCWRITE
Type = 44) DCWRITE request is presented to the NSP.

The LOGICALACK capability requires MCS participation. Thus, if a station has
INPUTACTION equal to SENDANDWAIT, and if the station is attached to an
object job file, the MCS must participate in I/O for that object job file.

The SET/RESET LOGICALACK DCWRITE request is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function
must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

Example

ALLOCATE(MSG,6);
MSG[O] := LSN & 43 [47:8] & 1 [24:1];
RESULT := DCWRITE(MSG);

8600 0841-000

ACKNOWLEDGE (DCWRITE Type = 44)

ACKNOWLEDGE (DCWRITE Type = 44)

Required ParameterslFields

The line and station must be in a to-be-acknowledged state. A message parameter
and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value

44

Description

Type.

Variant field, not used.

LSN or DLS number.

The ACKNOWLEDGE DCWRITE function causes the NSP to resume execution of
the NDLII algorithm for the line and its station where execution had been
suspended as the result of a SENDHOST INPUT statement with INPUTACTION
SENDANDWAIT. If the line and station are not in a to-be-acknowledged state, an
ERROR RESULT (Class = 99) message is generated with a value of 13 in the result
byte index field (MSG[I].[47:08]).

The ACKNOWLEDGE DCWRITE function is intercepted when performed on a
pseudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted messages
are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,6);
MSG[OJ := LSN & 44 [47:8J;
RESULT := DCWRITE(MSG);

8600 0841-000 5-55

TRANSFER STATION CONTROL (DCWRITE Type = 45)

TRANSFER STATION CONTROL (DCWRITE Type = 45)

5-56

Required ParameterslFields

The minimum message size is seven words. A message parameter and the following
are required:

Word Field Value Description

0 [47:08] 45 Type.

[39:16] Variant field, as follows:

[31 :01] BNA tra'nsfer bit.

0 The station is transferred to the designated
MCS.

1 The station is transferred to the BNA station
transfer MCS, SYSTEM/STATION/fRANSFER.
The host name must be supplied and the MCS
name is optional. Word 6.[47:12] supplies the
index to the Station Transfer Index Control Word
(INX = MSG[6].[47:12]}. The host name and
MCS name are indexed by MSG[INX].[11:12] and
MSG[lNX].[23:12] respectively.

[30:01] 0 No information is to be passed in the station
transfer control result to the MCS to which the
station is to be transferred.

1 Information is to be passed in the station
transfer contra'i result to the MCS to which the
station is to be transferred.

[29:01] 1 The station being transferred is a pseudostation
that represents an OOT. The OOT unit number
must be present in MSG[6].[47:24]. Contra I is to
be maintained over any output to that station.
This transfer is allowed only by the MCS that is
designated as the COMS/OOT /DRIVER.

[28:01] 0 Full participation is not requested.

1 Full participation is requested: The MCS elects
to receive intercepted OCWRITE requests as
they are issued by the MCS to which control is
being transferred.

continued

86000841-020

Word

2

Explanation

TRANSFER STATION CONTROL (DCWRITE Type = 45)

Field

[27:01]

[26:01]

[25:01]

[24:01]

[39:16]

Value Description

Old BNA transfer bit. This is supported for
migration only and will be deimplemented.

o The station is transferred to the designated
MCS.

1 The station is transferred to the BNA station
transfer MCS, SYSTEM/STATION/TRANSFER.
The host name must be supplied, and the MCS
name is opt~onal. The host name and MCS name
are indexed by MSG[6].[07:08] and
MSG[6].[l5:08], respectively.

1

1

o

Allows an MCS to transfer a ,station to another
MCS and still maintain control over any output to
that station.

Allows an MCS to transfer a statio'n under its
control to the original controlling MCS defined in
the DATACOMINFO file.

No initiation is attempted for the recipient MCS.

The size in bytes of the information to be
passed (if word 0 field [30:01] = 1).

The TRANSFER STATION CONTROL DCWRITE function allows an MCS to
transfer any of the stations under its control to any other MCS.

The station to be transferred must be attached to its MCS at the time of its
transfer. The recipient MCS need not be currently in execution for the transfer to
take place. If the recipient MCS has been initiated or is in execution at the time of
the transfer, the recipient receives a result message that serves to inform that MCS
that it has inherited a new station. If the recipient MCS is not initiated or running
at the time of the transfer, the station is marked as detached (not attached).
Whether or not the recipient MCS is running or initiated at the time of the
transfer, the current status of the station remains unaltered (if the station is NOT
READY before the transfer, it remains NOT READY after the transfer).

The result message received by the recipient·MCS (in its primary queue) has the
same essential form as the INTERROGATE STATION ENVIRONMENT RESULT
(Class = 15) message. (Refer to ",TRANSFER STATION CONTROL RESULT
(Class = 16)" in the "MCS Result Message Formats" section for details.)

A variant of this function allows the calling MCS to cause initiation of the recipient
MCS in the event that the recipient is not initiated or running at the time of the
transfer. The TRANSFER STATION CONTROL RESULT (Class = 16) message is
placed in the primary queue of the recipient if the variant form is employed.

86000841-020 5-57

TRANSFER STATION CONTROL (DCWRITE Type = 45)

5-58

Another variant permits the MCS to transfer the station to its original controlling
MCS specified in the DATACOMINFO file without knowing which MCS that is.
However, if this variant is used to attempt a station transfer by the original
controlling MCS specified in the DATACOMINFO file, then no action occurs.

In case of errors, the station remains assigned to the calling MCS.

Transferring a station from one MCS to another while maintaining partial control
is allowed. This variant is invoked by turning on bit 26 in word 0 of the message.
The number of the MCS making the request is stored in word 2 of the station table
at PSEUDOMCSNRF ([41:06]). The number of the transferred MCS is stored in
word 0 at STAMCSNRF ([37:08]).

If the station is transferred a second time by the new controlling MCS, the
PSEUDOMCSNRF field contains the original controlling MCS number, allowing
transfers to be made from one remote MCS to another without returning to the
original controlling remote MCS each time. If the station is transferred back to the
original controlling MCS, the PSEUDOMCSNRF is returned to its initial value of O.
Output that is directed to this station by either a program using a remote station or
by the controlling MCS (the one to which the station was transferred, whose Mes
number is contained in the STAMCSNRF field) is intercepted and delivered to the
MCS whose number is contained in the PSEUDOMCSNRF field as an
INTERCEPTED MESSAGE (Class = 29) result.

Transfer of station control to another MCS is not maintained over a haltlload or
through a complete shut-down and subsequent reinitialization of data comm. In
either case, the control of any stations that were transferred reverts to the MCSs
originally designated in the DATACOMINFO file.

The TRANSFER STATION CONTROL DCWRITE function can also be used by an
MCS to transfer control of a pseudostation to another MCS. At the time of the
transfer, the transferring MCS can request full participation.

Under full participation, the first MCS (the fully participating MCS) can take part
in the data comm functions performed on the pseudostation by the second MCS (the
controlling MCS). Whenever the controlling MCS issues certain DCWRITE
requests, the request messages are intercepted, transformed to INTERCEPTED
MESSAGE (Class = 29) results, and placed in the primary queue of the fully
participating MCS.

Full participation can be requested only for a pseudostation. If requested for an
ordinary station, a DCWRITE error is returned.

Full participation can be requested by only one MCS for each pseudo station. If full
participation is requested by an MCS but another MCS has already requested full
participation, a DCWRITE error is returned.

86000841-020

TRANSFER STATION CONTROL (DCWRITE Type = 45)

When control of a station is transferred to an MCS, that MCS receives a
TRANSFER STATION CONTROL (Class = 16) result message in its primary queue.
That message has the same form as the STATION ENVIRONMENT (Class=15)
result message. Fields in the message can be used by the controlling MCS to
determine whether or not the station is a pseudo station . and whether or not the
station has a fully participating MeS.

A check of the BNA transfer bits is performed to determine whether one of the
following bits is on:

• Word 0.[27:01]

This is supported for migration only and will be deimplemented. When this bit
is on, a host name and an MeS name index is supplied in word 6.[7:08] and,
word 6.[15:08] respectively. A string value located at MSG[INX], where INX is
the value of the host name or MeS name index, is terminated by a period (.).

The host name must be supplied, and the MCS name is optional.

• Word 0.[31:01]

When this bit is on, an index to a Station Transfer Index Control Word is
supplied in word 6.[47:12] (lNX = MSG[6].[47:12]). MSG[INX].[11:12] contains
the index to the host name structure and MSG[INX].[23:24] contains the index
to the MCS name structure.

The host name must be supplied, and the MCS name is optional. A value of 0 in
the MeS name index field indicates that no MCS name was supplied.

MSG[O].[31:01] = 0

If MSG[0].[31:01] = 0, the following information is valid:

8600 0841-020

'Word

6

7

Field

[11:12]

Description

MCS number of the recipient MCS.

The first word of information to be passed (if word 0 field
[30:01) = I}.

5-58A

TRANSFER STATION CONTROL (DCWRITE Type = 45)

MSG[O].[31:01] = 1

If MSG[O].[31:01] = 1, the following information is valid:

Word

6

MSG[INX]

MSG[INX]

7

Field

[47:12]

[23:12]

[11:12]

Description

INX: = Index to station transfer index control word.

Index to MCS name.

@[23:12].[47:16] - Length of MCS name in bytes.

@[23:12].[32:08] - First character of MCS name.

Index to host name.

@[11:12].[47:16] - Length of host name in bytes.

@[11:12].[32:08] - First character of host name.

The first word of information to be passed (if word 0 field
[30:01] = 1).

MSG[O].[27:01] = 0

If MSG[O].[27:01] = 0, the following information is valid:

Word

6

7

Field

[07:08]

Description

MCS number of the recipient MCS.

The first word of information to be passed (if word 0 field
[30:01] = 1).

MSG[O].[27:01] = 1

5-588

IfMSG[O].[27:01] = 1, then the setting of MSG[O].[30:011 is ignored, and the
following information is valid:

Word Field

6 [15:08]

[07:08]

Description

Index to the program name. The program name must
terminate with a period (.).

Index to the host name. The host name must terminate with
a period (.).

86000841-020

TRANSFER STATION CONTROL (DCWRITE Type = 45)

Example

ALLOCATE(MSG.7);
MSG[OJ := LSN & 45 [47:8J & 1 [24:1J;
MSG[6J := MCSNR;
RESULT := DCWRITE(MSG);

86000841-020 5-59

WRITE AND RETURN (DCWRITE Type = 46)

WRITE AND RETURN (DCWRITE Type = 46)

5-60

Required ParameterslFields

The required parameters are identical to those for the WRITE (DCWRITE
Type = 33) DCWRITE function, except that Type (MSG[O].[47:08]) has the value
46.

Explanation

The WRITE AND RETURN DCWRITE function is exactly the same as the WRITE
(DCWRITE Type = 33) DCWRITE function except that the result message for the
output request is unconditionally returned to the current queue of the MCS. This
DCWRITE type can be used instead of the NULL STATION REQUEST (DCWRITE
Type = 48) DCWRITE function to limit the number of output messages sent at
one time. The format of the message parameter is identical to that for the WRITE
DCWRITE function except that MSG[O].[47:8] = 46.

The priority of the message produced by the MCS is contained in this field. The
MCS can produce 128 levels of priority, with 0 as the lowest priority and 127 the
highest. If the priority level is not zero, the NSP inserts the message into the
station queue following messages of higher or equal priority and preceding
messages of lower priority. In this way, MCS messages are transmitted in a
high-to-Iow priority sequence rather than the order in which the messages were
received ~:Y the NSP.

The WRITE AND RETURN DCWRITE function is intercepted when performed on
a pseudostation that has a fully participating MCS. The DCWRITE function must
be performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,8) ;
MSG[OJ := LSN & 46 [47:8J & 1 [26:1J;
MSG[2J := 0 & 8 [39:16J;
REPLACE POINTER(MSG[6J,8) BY ~LAST ONE~;

RESULT := DCWRITE(MSG);

8600 0841-000

NULL STATION REQUEST (DCWRITE Type = 48)

NULL STATION REQUEST (DCWRITE Type - 48)

Required Parameters/Fields

. A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value

48

o

1

Description

Type.

This message is to be returned to the current
queue for the station.

This message is to be returned to the primary
queue of the MeS.

LSN or DLS number.

The NULL STATION REQUEST DCWRITE function causes a message to be placed
in the appropriate station queue so that, on encountering this message, the DCC
performs no other action than to return the message to the primary or current
queue of the station as a GOOD RESULT (Class = 5) message with an original
DCWRITE type of 48. This message is returned to the primary or current queue
of the station regardless of whether or not the MCS has indicated that it is to
receive Class =' 5 and Class = 9 .messages. This DCWRITE type allows the MCS
to insert a marker to signal the end of a series of outputs or a batch within a
series of outputs to a station.

The NULL STATION REQUEST DCWRITE request is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function
must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

Example

ALLOCATE(MSG,6);
MSG[O] := LSN & 48 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000 5-61

SET/RESET SEQUENCE MODE (DCWRITE Type == 49)

SET/RESET SEQUENCE MODE (DCWRITE Type - 49)

Required Parameters/Fields

The minimum message size required for the SET jRESET SEQUENCE MODE
DCWRITE function is eight words. A message parameter and the following are
required:

Word Field Value Description

0 [47:08] 49 Type.

[39:16] 0 The sequence mode is to be turned off.

1 The sequence mode is to be turned on.

[23:24] LSN or DLS number.

MSG[O].[39:16] = 1

5-62

If MSG[O].[39:16] = 1, the following information is valid:

Word

2

6

7

Explanation

Field

[39: 16]

[26:27]

[26:27]

Description

Maximum number of digits allowed for sequence number
o < MSG[2].[39:16] < 9.

Base (starting) sequence number value.

Increment value.

The SET jRESET SEQUENCE MODE DCWRITE function allows an MCS to request
the NSP to turn the SEQUENCE toggle on or off for use in NDLII algorithms and
to provide the base (or starting) sequence number, increment value, and
maximum number of digits allowed for the sequence number.

DCWRITE error 99 is returned if the station is. not capable of performing
automatic sequencing.

The SET jRESET SEQUENCE MODE DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MeS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

8600 0841-000

SET/RESET SEQUENCE MODE (DCWRITE Type = 49)

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 49 [47:8] & 1 [39:16];
MSG [2] . [39: 16] : = 8;

, MSG [6] : = 1000;
MSG[7] := 1000;
RESULT := DCWRITE(MSG);

8600 0841-000 5-63

WRITE TO TRANSFERRED STATION (DCWRITE Type - 53)

WRITE TO TRANSFERRED STATION (DCWRITE Type - 53)

5-64

Required Parameters/Fields

A message parameter and the following are required:

Word

o

6 to end

Explanation

Field

[47:08]

[39:16]

[23:24]

Value

53

o

Description

Type.

A GOOD INPUT RECEIVED (Class = 0)
message is forwarded to the MCS
(STAMCSNRF) in control of the requested LSN.

1 A STATION EVENT (Class = 1) message is
forwarded to the MCS (STAMCSNRF) in control
of the requested LSN.

2 The result of a write from the transferred
station is to be returned either to the controlling
MCS or to 10gicalljO by a call on DCIOFINISH.

3 The message to DCWRITE is turned into a
GOOD RESULTS (Class = 5) message.

LSN or DLS number.

If MSG[0].[39:16] = 2, these words contain
the 6-word result message to be forwarded.

The WRITE TO TRANSFERRED STATION DCWRITE function allows an MCS that
has partially transferred control of a station to direct result messages to either
the transferred station or its controlling MCS.

If the variant field (MSG[O].[39:16]) contains a value of 0 or 1, the message is
forwarded with the MSG[O] word modified to reflect either a GOOD INPUT
RECEIVED (Class = 0) or a STATION EVENT (Class = 1) result, a variant of 0,
and the requested LSN in MSG UNITF.

If the variant field contains a value of 2, the message forwarded is in the text
portion of the WRITE TO TRANSFERRED STATION (DCWRITE Type = 53)
DCWRITE function message and is 6 words in length. If the original message was
of type OBJECTJOBOUTPUT, this result is returned to logical I/O or it is
returned to the MCS in control of the transferred station.

If the variant field contains a value of 3, the message is turned into a GOOD
RESULTS message by changing the Type field .. If the STATION ATTACH
(DCWRITE Type = 1) DCWRITE function that attached the station included a
results request, or if the original DCWRITE request was a WRITE AND RETURN
(DCWRITE Type = 46) DC WRITE function, then the message is placed in either
the primary or current queue; otherwise, it is deallocated.

8600 0841-000

WRITE TO TRANSFERRED STATION (DCWRITE Type - 53)

Example

ALLOCATE(MSG,7);
MSG[O] := LSN & 53 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000 5-65

SEND MCS RESULT MESSAGE (DCWRITE Type = 55)

SEND MCS RESULT MESSAGE (DCWRITE Type - 55)

5-66

Required Parameters/Fields

The mif1.imum message size for this request is six words.

Word

o

3

6 to end

Explanation

Field

[47:08]

[22:23]

[47:24]

Value Description

55 Send MCS result message.

LSN.

Original result type.

Text (if any) of original MCS result message.

An MCS uses the SEND MCS RESULT MESSAGE DCWRITE function to forward
an MCS result message to another MCS. When this DCWRITE request is received,
the data comm subsystem removes the header and places the specified result
(word 6 through the end of the message), without alteration, in the primary
queue of the MCS that currently controls the specified station.

This DCWRITE request has been designed to allow an MCS that has requested full
participation for a pseudostation to forward MCS result messages to the MCS that
is currently controlling that station. After receiving an intercepted DCWRITE
request in its primary queue, the fully participating MCS normally sends a
corresponding result message back to the controlling MCS.

This DCWRITE request is valid only on a transferred pseudostation that has a
fully participating MCS. If the station is not a pseudostation, or the station has
no fully participating MCS, a DCWRITE error is returned. If the MCS that issues
this request is not the fully participating MCS, a DCWRITE error is returned .

.. ,

8600 0841-000

SET PSEUDOSTATION ATTRIBUTES (DCWRITE Type = 56)

SET PSEUDOSTATION ATTRIBUTES (DCWRITE Type - 56)

Required Parameters/Fields

The minimum message size for this request is eight words, and the maximum size
is 52 words if the pseudostation title is updated.

Word Field Value Description

0 [47:08] 56 Type.

[39:16] Variant field, as follows:

[39:01] 1 SCREEN to be updated.

[38:01] 1 MYUSE to be updated.

[37:01] 1 WIDTH to be updated.

[36:01] 1 PAGE to be updated.

[35:01] 1 MAXINPUT to be updated.

[34:01] 1 MAXOUTPUT to be updated.

[33:01] 1 SEQUENCEMODECAPABLE to be updated.

[32:01] 1 WRAPAROUNDCAPABLE to be updated.

[31:01] 1 Pseudostation title to be updated.

[22:23] LSN.

6 [46:01] SCREEN attribute, as follows:

0 Terminal is not a screen device (CRT).

1 Terminal is a screen device (CRT).

[46:02] MYUSE attribute, as follows:

1 IN.

2 OUT.

3 I/O.

[44:05] Not in use: filler to byte boundary.

[39:16] LlNEWIDTH attribute: bytes per line.

[23:16] PAGESIZE attribute: lines per page.

7 [47:16] MAXIN PUT.

[31: 16] MAXOUTPUT.

[15:01] SEQUENCEMODECAPABLE.

[14:01] WRAPAROUNDCAPABLE.

8 to 50 Pseudostation title in display form.

8600 0841-000 5-67

SET PSEUDOSTATION ATTRIBUTES (DCWRITE Typ~ = 56)

5-68

Explanation

The SET PSEUDOST ATION ATTRIBUTES DCWRITE function can be used by an
MCS to turn on certain attributes of a pseudostation.

This request is designed to be used by the allocating MCS before it transfers
control of the pseudosta:tion to another MCS. The new controlling MCS can
determine the attributes of the station either by examining the TRANSFER
STATION CONTROL (Class = 16) result message it receives or by issuing an
INTERROGATE STATION ENVIRONMENT (DCWRITE Type = 4) request. That
is, the values turned on by the SET PSEUDOST A TION ATTRIBUTES request are
stored by the data comm subsystem and are made available to other MCSs.

This DCWRITE type is valid only for a pseudostation and can be issued only by
the MCS that has allocated the station. This DCWRITE type cannot be issued on a
station that has a fully participating MCS; that is, the allocating MCS must have
exclusive control over the pseudostation. If any of these rules are violated, a
DCWRITE error is returned.

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 56 [47:8] & 1 [38:1];
MSG[6].[46:2] := 3; .
RESULT := DCWRITE(MSG);

8600 0841-000

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

STATION ASSIGNMENT TO FILE (DCWRITE Type - 64)

Required Parameters/Fields

A message parameter and the following are required:

Word Field Value

0 [47:08] 64

[39:16]

[35:02]

0

1

2

3

[33:02] 0

1

2

3

[29:06]

[23:24]

2 [39:16]

6 to end

Explanation

Description

Type.

Variant, as follows:

Tanking value, as follows:

Unspecified.

None.

Synchronous.

Asynchronous.

MCS allows assignment to file.

The station is not available for assignment.

The station is in use (the MCS might or might
not assign it later).

Invalid use of station (for example, open input
on an output-only device).

As detailed in STATION ATIACH (DCWRITE
Type = 1) DCWRITE.

FRSN (as received in the FILE OPEN (Class =
2) message for this station).

Text size. If not zero, the text in MSG[6] is sent
to the station if the assignment is allowed and
the file MYUSE is OUT or 10.

See text for MSG[2].[39: 16].

When an object job opens a remote file, the operating system procedure DCOPEN
is called to create the station list of the remote file. DCOPEN generates a FILE
OPEN (Class = 2) message for each station in the file and sends this message to
the controlling MCS of the station. The "FILE OPEN (Class = 2)" message is
described in the "MCS Result Message Formats" section of this manual. Receipt of
the FILE OPEN message is interpreted by the MCS as a request by the DCOPEN
procedure for the MCS to grant permission for the remote file to communicate
with the station. On receipt of a FILE OPEN message for one of its stations, the
controlling MCS replies with a STATION ASSIGNMENT TO FILE DCWRITE
function. This DCWRITE type allows the MCS to determine the actual status of
the assignment of the station in regard to the file.

8600 0841-000 5-69

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

5-70

With an appropriately assigned value in the variant field (MSG[0].[SS:02]), the
MCS can do one of the following:

• Allow assignment of the station to the file (MSG[0].[S3.02] = 0).

• Unconditionally deny assignment of the station to the file
(MSG[0].[SS:02] = 1).

• Mark the station as being currently in use, with the possibility of assignment
allowed at a later time (MSG[0].[S3:02] = 2).

• Notify the operat~ng system that the intended. use of the station by the file is
invalid (MSG[O].[3S:02] = 3).

The system can override a request from the MCS to assign a station to the file if
the intended use of the station is invalid. In this case, the DCWRITE function
returns the value 101.

The object program in which the file is declared· can interrogate the file
DISPOSITION attribute to discover whether or not the station has been assigned.

When the MCS sends the STATION ASSIGNMENT TO FILE DCWRITE message
with the variant equal to 0 (assignment allowed), the DC WRITE function checks
to see if the requested use of the station is compatible with its description in the
DAT ACOMINFO file. If, for example, the DATACOMINFO file defines the station
to be an output-only device and the open request is for an input file, the
DCWRITE function changes the DISPOSITION attribute of the station to illegal
use (6), places an end of file message for the station in the input queue of the
file, and returns a BAD DCWRITE RESULT value of 101.

If an object job opens a remote file (input only or I/O), the DCWRITE function
verifies that the station whose assignment is requested is not already assigned to
another input or I/O file unless the MCS is participating in I/O. An object job is
not restricted in the number and types of remote files it can use, but a station can
be assigned to only one input or I/O file at any given time without the
cooperation of the MCS. After a station has been assigned to an input or I/O file,
the DCWRITE function denies the request to assign the station to another one,
and gives the same response as described above for illegal use, if the MCS is not
participating. If the DCWRITE function does not find that the assignment allowed
is an illegal use, the DCWRITE function does the following:

• Updates the DISPOSITION attribute of the station

• Requests the station to be enabled for input (if the station is not already
enabled and the MCS is not participating in I/O)

• Raises the file POPULATION attribute count by one

If the MCS postpones assignment by sending the STATION ASSIGNMENT TO
FILE DCWRITE message with the variant set to 2 (assignment postponed),the
DCWRITE function updates the DISPOSITION attribute of the station.

If the MCS denies assignment (variant value of 1 or'S, which it can also do after
allowing or postponing assignment), the DCWRITE function'does the following:

8600 0841-000

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

• Updates the DISPOSITION attribute of the station

• Decreases the file POPULATION count (if assignment had previously been
allowed)

• Places an end of file message in the input queue of the file

Subsequent attempts to communicate with this station cause an end· of file
action for the file.

The STATION ASSIGNMENT TO FILE DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The
DCWRITE function must be performed by the MCS that currently controls the
station. The intercepted messages are placed in the primary queue of the fully
participating MCS.

Output Tanking for Remote Files

The data comm I/O subsystem supports disk tanking for remote output files. This
feature is available only for nondirect files and for those stations for which the
controlling MCS does not elect to participate in I/O.

The four states for tanking are UNSPECIFIED, NONE, SYNC, and ASYNC.

UNSPECIFIED is the default state. A file with an UNSPECIFIED tanking value is
not tanked unless told to do so by an MCS at file assignment time.

NONE causes a file not to be tanked and prevents an MeS from designating
tanking at file assignment time.

SYNC causes a file to be tanked. When the file is closed, the task does not resume
execution until all tanked output has been completed. The controlling MCS for
stations in a file for which the user designates a tanking value of SYNC cannot
change this value at file assignment time.

ASYNC also causes a file to be tanked,' but, unlike SYNC, the task continues
execution after closing the file without waiting for all tanked output to be
completed. This task can go to EOT while its output continues to be sent. The
controlling MCS for stations in a file for which the user designates a tanking
value of ASYNC cannot change this value at file assignment time.

If output is still queued when the file is closed with ASYNC tanking, the
controlling MCS for each station in the file receives two file-close messages. The
first is identical to the normal file-close message except that MSG[O].[24:01]
equals 1. The MCS can then expect to receive a second file-close message
indicating that all output to that station from that file has finished. The second
file-close message does not contain such information as the INTNAME and TITLE
of the remote file, the task name, or the mix number. Such information can be
saved, if necessary, from the first file-close message. MSG[O].[25:01] equals 1 if it
is the final, skeletal, file-close message.

8600 0841-000 5-71

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

5-72

Tanking can be invoked in three ways:

• By the task attribute TANKING

• By the file attribute TANKING

• By an MCS using a variant of the ASSIGNMENT TO FILE DCWRITE
(DCWRITE Type = 64)

The TANKING task attribute is described in the A Series Task Attributes
Programming Reference Manual. The TANKING file attribute is described in the
I/O Subsystem Programming Reference Manual. An MCS can also designate
tanking at file assignment time. MSG[O).[25:02) of the file-open message contains
the user-indicated tanking value (as determined by the TANKING task attribute
or the TANKING file attribute). If the MCS does not wish to allow a file to be
opened with the tanking value supplied to it, it can deny assignment. If
MSG[O).[25:02) is 0 (UNSPECIFIED), the MCS can determine the tanking value for
the file.

The format for the STATION ASSIGNMENT TO FILE DCWRITE message is as
follows: MSG[O).[33:02) contains the file disposition, and MSG[O).[35:02) contains
the tanking value that the MCS wishes for the file. If the value that the MCS
designates is not compatible with the value that the user designates or with the
value it or another MCS has designated for another station in the file, it produces
a DCWRITE error 144, INVALID OUTPUT TANKING SPECIFICATION.

If the user causes a break-on-output action for a remote file that has been tanked,
all tanked output from that file to that station is discarded until the break is
handled by the user task. If the task has already closed the file, all tanked output
to that station is discarded. The output to other stations in the file continues.
This condition could result in a great deal of discarded output but does allow
unwanted output for a task that can no longer be running to be stopped. Tanked
output is not returned to an MCS if it performs a RECALL MESSAGES (DCWRITE
Type = 41) DCWRITE function.

Tanked output is separate from output that is directly queued for a station.
Queued output for a station can contain output from several files and can contain
messages from an MCS. As the amount of queued output from the particular
tanked file is completed, more of the tanked output is detanked and queued.
Therefore, output from different remote files from the same task can be received
by the station in a different order than that in which it was sent. All output from
the same file is received in the order it was sent.

If a task is run in a swapspace, it is not swapped out for remote output if its
remote files are tanked. If a task is not run in swapspace, it is not suspended
remote output if its remote files are tanked. This situation means that some tasks
that do a large amount of remote output (or do bursts of remote output) remain
on the processor longer and have their performance improved.

8600 0841-000

STATION ASSIGNMENT TO FILE (DCWRITE Typ~ = 64)

MCS Participation in I/O

The MCS can also designate those options under which the station message traffic
is to be handled by turning on the desired option bits in MSG[0].[29:06]. (Refer to
the "STATION ATTACH (DCWRITE Type = 1)" DCWRITE function in this
section for the option bit interpretations.) If MSG[0].[29:01] = 1, the MCS
indicates its desire to participate in the I/O functions for the station and the file.
Participation in I/O means that the MCS acts as arbiter for messages to and from
the file. Specifically, the MCS receives all input messages directly from the
station and decides whether the input is to be acted on by itself or forwarded to
the object program file. Any input to the object job file is forwarded through the
use of the WRITE TO OBJECT JOB (DCWRITE Type = 65) DCWRITE function.
Output to the station from the object job file (writes executed by the object job) is
sent directly to the MCS in the current queue of the station in the form of an
OBJECT JOB OUTPUT (Class = 3) message. Output to the station is forwarded
with the customary WRITE (DCWRITE Type = 33) DCWRITE function.'

The ability of the MCS to interpose between the object job file and the station
allows it to perform pre-editing of output records to a station from an object job,
message switching functions (such as direct input from a station to anyone of
several files), or other extended functions are required. The MCS allows the
station to be assigned to one or more files at any given time in situations in which
the MCS is involved in the I/O functions.

If MSG[0].[29:01] = 0, the MCS relinquishes all responsibility for control of
functions related to the handling of I/O.· In this situation, all GOOD INPUT
RECEIVED (Class = 0) messages from the station are forwarded to the object
program file, and all OBJECT JOB OUTPUT (Class = 3) messages from the
object program are forwarded directly to the station.

The MCS can allow a station to be assigned to one or more files, but a station can
be assigned to only one input file at a time without the participation of the MCS
in I/O for the station. Therefore, a station can be opened for output using one file
and opened for input using another (for example, in the same program) so that
the object job appears to read one file and write to another, although the physical
terminal is the same in both cases.

When a station is assigned to an input file and the MCShas elected not to
participate in I/O, the DCWRITE function automatically enables the station for
input if it is not already enabled. However, if the MCS participates in I/O, it is
responsible for enabling or disabling the station.

Whether or not the MCS elects to participate in I/O, it receives all ERROR
RESULT (Class = 99) messages, STATION EVENT (Class = 1) messages, and
FILE CLOSE (Class = 4) messages of the station.

Also, the MCS could choose to participate in I/O functions for some of the
stations in the file and not to participate for other stations, because stations are
assigned to files on a station by station basis.

8600 0841-000 5-73

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

The STATION ASSIGNMENT TO FILE DCWRITE function requires the use of an
FRSN rather than the· customary LSN. The MCS must retain the FRSN s given to it
by the FILE OPEN message and maintain the correspondence between LSN and
FRSN. This maintenance of correspondence is particularly significant if the MCS
participates in I/O functions where a station is a member of (assigned to) more
than one file and the MCS is to perform functions such as message switching.
When a station is a member of more than one file at a time, an LSN can have
several related FRSNs. If MSG[2].[39:16] is not zero, the MCS allows the file
assignment; if the MYUSE of the file is OUT or 10, the DCWRITE function
generates an output to the station of the text starting in MSG[6].

Stations without Line Assignments

5-74

Stations declared in the DAT ACOMINFO ~ile without line assignments can be
included as FAMILY members in the FILE section of the DATACOMINFO file. If
an object program opens a remote file containing one of these stations, the
controlling MCS of the station is restricted in its response to the FILE OPEN
message unless it is participating in I/O for the. station. If the MCS is not
participating in I/O for the station and attempts to allow the STATION
ASSIGNMENT TO FILE, the DCWRITE function returns the result value of 88
(the station has no line assignment), and the disposition of the station in the file
remains unknown (0). If the program tries to write to the station (or does a
broadcast write), the program waits in the write statement until the disposition
of the station becomes known (assignment was allowed, denied, or postponed, or
an invalid use was attempted). Therefore, the MCS should either deny or
postpone the assignment of the station to the' file.

If the MCS does participate in I/O for the station without line assignment, it must
perform message switching. Because the MCS is participating in I/O, every output
from the program to the station without a line assignment is placed in the current
queue of the station. The MCS must change the class field of the message from
OBJECT JOB OUTPUT (Class = 3) to WRITE (DCWRITE Type = 33) and the
LSN /FRSN field to the LSNof the station actually communicating with the
program. The MCS must then pass the message on using the DCWRITE function.

In the case of input when the MCS is participating, the MCS must do the
'following:

• Change GOOD INPUT RECEIVED (Class = 0) messages from the station that
is actually communicating with the program to WRITE TO OBJECT JOB
(DCWRITE Type = 65) messages

• Change the LSN /FRSN field to the FRSN of the station without line
assignment

• Pass the message to the object job by using the function DCWRITE

The MCS must be participating in I/O for both the real and the dummy station to
capture and switch input messages.

8600 0841-000

STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)

Example

ALLOCATE(MSG,6);
MSG[O] := 0 & 64 [47:8] & 0 [39:10] & 0 [29:6]

& FRSN [23:24];
RESULT := DCWRITE(MSG);

8600 0841-000 5-75

WRITE TO OBJECT JOB (DCWRITE Type = 65)

WRITE TO OBJECT JOB (DCWRITE Type - 65)

5-76

Required Parameters/Fields

A message parameter and the following are required:

Word

o

2

6 to end

Explanation

Field

[47:08]

[39:16]

[23:24]

[39:16]

Value

65

Description

Type.

Variant, not used.

FRSN.

Number of bytes of
meaningful text supplied,
starting at MSG[6].

The number of words of text
area, consistent with the
number of bytes specified in
MSG [2].[39:16]. (For
example, n must satisfy
n > (MSG[2].[39: 16] + 5)
DIV 6.)

The WRITE TO OBJECT JOB DCWRITE function allows an MCS to forward input
records to an object job file. If the MCS elects to participate in I/O handling for a
station, all inputs from the station are sent directly to the MCS; the MCS is then
responsible for transferring the input to the file. By allowing the MCS to
participate in I/O, the MCS can perform preediting of input or output data
records, message switching functions, and so forth .

. The MCS must maintain the correlation between the LSN of a station and any
FRSNs so that this DCWRITE type can be invoked with the desired results.

This DCWRITE can also be used after the STATION· ASSIGNMENT TO FILE
CDCWRITE Type = 64) DCWRITE function, whether or not the MeS has elected
to participate in the I/O handling.

Example

ALLOCATE(MSG,16);
MSG[O] := FRSN & 65 [47:8];
MSG[2].[39:16] := 57;
REPLACE POINTER(MSG[6],8) BY

liTHE OBJECT JOB WILL RECEIVE THIS TEXT AS AN INPUT ",
"RECORD.II;

RESULT := DCWRITE(MSG);

8600 0841-000

STATION BREAK (DCWRITE Type = 66)

STATION BREAK (DCWRITE Type - 66)

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value Description

66 Type.

Variant field, not used.

FRSN.

The STATION BREAK DCWRITE function allows the MCS to inform an object job
that a break-on-output occurred at a .station. Any subsequent attempt at output
to the station from that file results in break error action.

In addition, if output is tanked for the file and all' output-capable stations in the
file with line assignments have break conditions, all tanked output for the file is
discarded.

Example

ALLOCATE(MSG~6);

MSG[O] := FRSN & 66 [47:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-77

ADD STATION TO FILE (DCWRITE 1)ype = 67)

ADD STATION TO FILE (DCWRITE Type - 67)

5-78

Required Parameters/Fields

A message parameter and the following are required:

Word

o

1

2

6 to end

Explanation

Field

[47:08]

[39:16]

[23:10]

[23:24]

[39:16]

Value

67

Description

Type.

As detailed in the STATION ASSIGNMENT TO FILE
(DCWRITE Type = 64) DCWRITE.

File number.

LSN of the station to be added.

Text size of the output text.

Output text.

The ADD STATION ,TO FILE DCWRITE function allows an MCSto perform the
equivalent of the following ALGOL construct:

REPLACE FILEID.FAMILY BY * + IISTATIONNAME II

This DCWRITE type permits an MCS to spontaneously add a new station to an
open remote file currently under control of the MCS and to simultaneously
perform the necessary assignment of the file as would otherwise be required by
the STATION ASSIGNMENT TO FILE (DCWRITE Type = 64) DCWRITE function.
Although similar in function to the Type = 64 DCWRITE function, this DCWRITE
type cannot be used in response to a FILE OPEN (Class = 2) result message.

The station to be added is designated by an LSN in MSG[1).[23:24) and must be
currently attached to the MCS. The file to which the station is to be added is
designated in MSG[O).[23:10). Refer to the description of the "FILE OPEN
(Class = 2)" result message in the "MCS Result Message Formats" section for the
meaning and origin of the file number.) If the specified station is already a
member of the file, error 82 (STATION ALREADY IN FILE) is returned.
MSG[O).[33:02) indicates the disposition to be assigned to the station. (Refer to the
semantics of the STATION ASSIGNMENT TO FILE (DCWRITE Type = 64)
DCWRITE function for the meaning of this field.)

If no errors are detected by the DCWRITE function, the content of MSG[O).[13:14)
is the RSN that has been assigned to the new station within the file.

Notification of the action performed by this DCWRITE type is not given to the
object program owning the file. In particular, the LASTST ATION file attribute is
not altered. The MCS can elect to inform the object program by issuing a WRITE
TO OBJECT JOB (DCWRITE Type = 65) DCWRITE function with the RSN value
returned. If MSG[2).[39:16) is not zero, the station is successfully added to the file.

8600 0841-000

ADD STATION TO FILE (DCWRITE Type = 67)

If the file MYUSE is OUT or 10, this DCWRITE type sends the text starting in
MSG[6] to the station.

The ADD STATION TO FILE DCWRITE function is intercepted only if it contains
text and is performed on a pseudostation that has a fully participating MCS. The
DCWRITE function must be performed by the MCS that currently controls the
station. The intercepted messages are placed in the primary queue of the fully
participating MCS.

Example

ALLOCATE(MSG,8};
MSG[O] := 0 & 67 [47:8] & FILENR [23:10];
MSG [1] : = LSN;
RESULT := DCWRITE(MSG};

8600 0841-000 5-79

CHANGE TERMINAL ATTRIBUTES (DCWRITE Type = 68)

CHANGE TERMINAL ATTRIBUTES (DCWRITE Type - 68)

5-80

Required Parameters/Fields

The minimum message size for this DCWRITE type is seven words. A message
parameter and the following are required:

Word Field Value Description

o [47:08] 68 Type.

[39:16] Variant, as follows:

[26:01] 1 Screen to be updated.

[25:01] 1 Width to be updated.

[24:01] 1 Page size to be updated.

[23:24] FRSN.

6 As follows:

[24:01] New screen value.

[23:12] New width value.

[11:12] New page size value.

Explanation

This FRSN-oriented DCWRITE function is used to change the PAGESIZE, WIDTH,
or SCREEN file attributes of a remote file. These three attributes are initially
equal to values given from the corresponding station attributes in the
DATACOMINFO file. On receipt of a FILE OPEN message, the MCS can choose to
override the declared values by using the CHANGE TERMINAL ATTRIBUTES
DCWRITE function. These three attributes are accessible to the object program
when the remote file is opened. Because the object program and the MCS operate
asynchronously, a small period can exist between the time the file is marked open
and the time the MCS performs the above DCWRITE function; during this time,
the object program can interrogate these attributes and obtain the default values
from the DATACOMINFO file. Thus, the MeS should perform this DCWRITE type
before it performs the STATION ASSIGNMENT TO FILE CDCWRITE Type = 64)
DCWRITE function; the latter DCWRITE type allocates the DISPOSITION
attribute, which can be used by the object program to determine the validity of
other remote attributes.

The CHANGE TERMINAL ATTRIBUTES DCWRITE function can be used any time
the remote file is open. The changes effected by this DCWRITE function are not
permanent; the update terminal attribute values are discarded by the system
when the file is closed.

(

The CHANGE TERMINAL ATTRIBUTES DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The

8600 0841-000

CHANGE TERMINAL ATTRIBUTES (DCWRITE Type = 68)

intercepted messages are placed in the primary q~eue of the fully participating
MeS.

Example

ALLOCATE (MSG, 7) ;
MSG[O] := FRSN & 68 [47:8] & 1 [25:1];
MSG[6] := 0 & 72 [23:12];
RESULT := DCWRITE{MSG);

8600 0841-000 5-81

SUBTRACT STATION FROM FILE (DCWRITE Type = 69)

SUBTRACT STATION FROM FILE (DCWRITE Type - 69)

5-82

Required Parameters/Fields

A message parameter and the following are required:

Word

o

1

Explanation

Field

[47:08]

[23:10]

[23:24]

Value Description

69 Type.

File number.

LSN of station to be subtracted.

The SUBTRACT STATION FROM FILE DCWRITE function allows an MCS to
perform the equivalent of the following ALGOL construct:

REPLACE FILEID.FAMILY BY * - "STATIONNAME. ";

This DCWRITE type permits an MCS to spontaneously subtract a station from an
open remote file currently under the control of the MCS.

8600 0841-000

MAKE LINE READY (DCWRITE Type = 96)

Line-Oriented Requests
The following DCWRITE types are line-oriented requests. The additional
requirements that apply to all line-oriented DCWRITE types are as follows:

• The minimum acceptable message size is 8 words.

• MSG[O].[23:24] can contain one of the following:

- An LSN for any station on the desired line, provided that the requesting
MCS controls that station

- A relative ~SP number and line number in the following form and
hereaft~r referred to as DL:

MSG[O].[23:01] = 1, not an LSN
MSG[O].[22:07] = Relative NSP number
MSG[O].[lS:08] = Line number

The MCS must control at least one station on the designated line when using the
DL number (except for the INTERROGATE LINE DCWRITE function).

MAKE LINE READY (DCWRITE Type = 96)

Required Parameters/Fields

A message parameter and the following are required:

Explanation

[39:16]

[23:24]

ype.

Variant, not used.

LSN or DL number.

The MAKE LINE READY DCWRITE function allows an MCS to resume execution
of the NDLII algorithm that had been suspended because of a MAKE LINE NOT
READY DCWRITE function.

A LINE STATUS CHANGE RESULT (Class = 9) message is always generated by
the NSP as a part of its response to the MAKE LINE READY DCWRITE function
(even if the line is already READY). The Class = 9 message is generated only for
the lowest-numbered valid station on the line and is routed to the current queue
of that station if th~ controlling MCS indicates that it is to receive Class = 9
messages. Otherwise, the message is discarded by the operating system.

The MAKE LINE READY DCWRITE function is intercepted when performed on a
pseudostation that has 3: fully participating MCS.The DCWRITE must be

8600 0841-000 5-83

MAKE LINE READY (DCWRITE Type = 96)

5-84

performed by the MCS that currently controls the station. The intercepted
messages are placed in the primary queue of the fully participating MCS .

. Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 96 [47:8];
RESULT := DCWRITE(MSG);

8600 0841-000

MAKE LINE NOT READY (DCWRITE Type = 97)

MAKE LINE NOT READY (DCWRITE Type - 97)

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value

97

Description

Type.

Variant field, not used.

LSN or DL number.

The MAKE LINE NOT READY DCWRITE function allows an MCS to make a line
NOT READY. If the LINE.BUSY variable is TRUE when this request is presented
to the NSP, the LINE STATUS CHANGE RESULT (Class = 9) message is not
generated until the line has actually become NOT READY.

A LINE STATUS CH;ANGE RESULT (Class = 9) message is generated by the NSP
as a part of its response to the MAKE LINE NOT READY DCWRITE function if,
and only if, the line was READY prior to the MAKE LINE NOT READY DCWRITE
function. The Class = 9 message is generated only for the lowest-numbered valid
station on the line and is routed to the current queue of that station if the
controlling MCS indicates that it is to receive Class = 9 messages. Otherwise, the
message is discarded by the operating system.

The MAKE LINE NOT READY DCWRITE function is intercepted when performed
on a pseudostation that has a fully participating MCS. The DCWRITE function
must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MCS.

Example

ALLOCATE(MSG,8);
MSG[O] := 0 & 97 [47:8] & 1 [23:1] & NSPNR [22:7]

& LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-85·

DIALOUT (DCWRITE Type = 98)

DIALOUT (DCWRITE Type = 98)

5-86

Required Parameters/Fields

The minimum size message size for the DIALOUT DCWRITE function is eight
words. A message parameter and the following are required:

Word

o

2

6 to end

Field

[47:08]

[39:16]

[23:24]

[39:16]

Value

98

Description

Type.

Variant field, not used.

LSN or DL.

Number of digits of the telephone number (in
bytes).

The telephone number to be dialed, represented
as a dialing sequence, which is a left-justified
EBCDIC numeric string. The dialing sequence is a
string of operators, each one byte long. The
operators and their corresponding EBCDIC codes
are shown in Table 5-5.

Table 5-5 presents the values that are used to control telephone dialing. These
values must· be used in the telephone number field, which begins in word 6 of the
DIALOUT DCWRITE message.

Table 5-5. Dialing Sequence Operators

Operator Code Operator Code

Dial a 1111 0000 EON 1111 1100

Dial 1 11110001 WFSDT 1111 1101

Dial 2 1111 0010 Delay 1 sec. 1100 0001

Dial 3 ii11 0011 Delay 2 sec. 1100 0010

Dial 4 1111 0100 Delay 3 sec. 1100 0011

Dial 5 1111 0101 Delay 4 sec. 11000100

Dial 6 1111 0110 Delay 5 sec. 1100 0101

Dial 7 1111 0111 Delay 6 sec. 1100 0110

Dial 8 1111 1000 Delay 7 sec. 1100 0111

Dial 9 1111 1001 Delay 8 sec. 1100 1000

Dial * 1111 1010 Delay 9 sec. 1100 1001

Dial # 1111 1011 Delay 10 sec. 1100 1010

8600 0841-000

DIALOUT (DCWRITE Type = 98)

Explanation

The DIALOUT DCWRITE function allows a remote station to be called through
the telephone switching network. The line involved must have been declared in
the DATACOMINFO tile to have dialout capability and must be READY,
disconnected, and neither ringing nor SWITCHEDBUSY.

The NSP always retries a dialout operation five times. If the dialout operation
fails with an ABANDON-CALL-RETRY error, no further retries are attempted.

Telephone numbers of any reasonable length can be used to call an in-house
station with an extension number or an outside line with or without an area code.
Provided that the nUlnber can be reached properly, the DCC releases the dialout
logic only after a proper "handshake" between the data sets involved has been
made and the system data set is in data mode. Normal operation can then
proceed.

Some automatic callirtg units (ACUs) are equipped with an optional feature that
requires the phone nllmber supplied to be terminated by an end of number (EON)
character. The DATACOMINFO file designates which ACUs have this requirement
by use of the ENDOFNUMBER attribute. The DCALGOL programmer is not
required to terminate phone numbers for such ACU s with the EON character.
Instead, the DCC supylies this character when it is required.

The Wait For Supplementary Dial Tone (WFSDT) operator causes the ACU to
wait until it detects a supplementary dial tone before signaling the NSP to
proceed. Not all ACU~ support this feature.

The delay operators cause the NSP to wait the specified number of seconds
before it continues the dialout operation. .

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 98 [47:8];
MSG[2]. [39: 16] := ~O;
REPLACE POINTER(MS(i[6],8) BY "2135556521";
RESULT := DCWRITE(~SG);

8600 0841-000 5-87

DISCONNECT (DCWRITE Type =99)

DISCONNECT (DCWRITE Type - 99)

5-88

Required Parameters/Fields

The minimum message size required for the DISCONNECT DCWRITE function is
eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 99 Type.

[39:16] Variant, not used.

[23:24] LSN or DL number.

Explanation

The DISCONNECT DCWRITE function causes the system to "hang up" on a line
connected through a telephone switchboard or switching network. rhe line must
have been declared in the DATACOMINFO file with the SWITCHED line attribute
equal to TRUE, and the line must be READY, CONNECTED, and not BUSY.

Example

ALLOCATE(MSG,8);
MSG[O] := 0 & 99 [47:8] & 1 [23:1] & NSPNR [22:7]

& LINENR [15:8] & STANR [7:8];
RESULT := DCWRITE(MSG);

8600 0841-000

INTERROGATE SWITCHED STATUS (DCWRITE Type = 101)

INTERROGATE SWITCHED STATUS (DCWRITE Type - 101)

Required Parameters/Fields

The minimum message size required for the INTERROGATE SWITCHED STATUS
DCWRITE function is eight words. A message parameter and the following are
required:

Word

o

Explanation

Field

[47:08]

[39:16]

[23:24]

Value Description

101 Type.

Variant, not used.

LSN or DL.

The INTERROGATE SWITCHED STATUS DCWRITE function is allowed only for a
station on a line declared in the DA T ACOMINFO file with the SWITCHED line
attribute equal to TRUE. In response to the DCWRITE function, the DCC
generates a SWITCHED STATUS RESULT (Class = 7) message which, if the DL
number is used, it places in the current queue of the lowest-numbered valid
station on the line. If LSN is used, it places the message in the current queue of
the indicated station.

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 101 [47:8};
RESULT := DCWRITE(MSG);

8600 0841-000 5-89

SET/RESET AUTOANSWER (DCWRITE Type = 102)

SET/RESET AUTOANSWER (DCWRITE Type - 102)

5-90

Required Parameters/Fields

The minimum message size required for the SET/RESET AUTOANSWER
DCWRITE function is eight words. A message parameter and the following are
required:

Word Field Value Description

0 [47:08] 102 Type.

[39:16] 0 AUTOANSWER has the value FALSE.

1 AUTOANSWER has the value TRUE.

[23:24] LSN or DL.

Explanation

The SET/RESET AUTOANSWER DCWRITE function is allowed for stations on
lines declared in the DATACOMINFO file with the SWITCHED line attribute equal
to TRUE, regardless of the status of the line. For all lines so declared that are in
a normal disconnected state, the NSP monitors the data set lead ring indicator
(RI) for incoming calls. When AUTOANSWER is TRUE and ringing is detected,
the NSP answers the phone automatically. If AUTOANSWER is FALSE, the phone
is not answered.

The SET AUTOANSWER DCWRITE function causes the NDLII variable
LINE.DISCONNECTACTION have the value AUTOANSWER. The RESET
AUTOANSWER DCWRITE function causes LINE.DISCONNECTACTION to have
the value NONE and the ring indication to be ignored.

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 102 [47:8] & 1 [39:16];
RESULT := DCWRITE(MSG);

8600 0841-000

SET/RESET LINE TOGS·TALLYS (DCWRITE Type = 103)

SET/RESET LINE TOGS·TALLYS (DCWRITE Type - 103)

Required Parameters/Fields

The minimum message for this DCWRITE type is eight words. A message
parameter and the following are required:

Word Field Value Description

O' [47:08] 103 Type.

[39:16] Variant, not used.

[23:01] 1 MSG[0].[23:24] contains DL.

[23:24] DL or LSN.

6 [23:01] 1 Enable setting of LlNE(TOG[1]).

[22:01] 1 Enable setting of LlNE(TOG[O]).

[21:01] 1 Enable setting of LlNE(TALL Y[1]).

[20:01] 1 Enable setting of LlNE(TALLY[O]).

[17:01] Setting of LlNE(TOG[1]).

[16:01] Setting of LlNE(TOG[O]).

[15:08] Setting of LlNE(TALL Y[1]).

[07:08] Setting of LlNE(TALLY[O]).

Explanation

The SET/RESET LINE TOGS-T ALLYS DCWRITE function allows an MCS to
dynamically turn on or off any or all line TOGs or line TALLY s for a given line.

The SET/RESET LINE TOGS-TALLYS DCWRITE function is intercepted when
performed on a pseudostation that has a fully participating MCS. The DCWRITE
function must be performed by the MCS that currently controls the station. The
intercepted messages are placed in the primary queue of the fully participating
MeS.

Example

ALLOCATE(MSG,8);
MSG[O] := DL & 1 [23:1] & 103 [47:8];
MSG[6] := 0 & 1 [22:1] & 1 [21:1] & 0 [16:11 & 100 [15:8];
RESULT := DCWRITE(MSG);

8600 0841-000 5-91

LINE INTERROGATE (DCWRITE Type = 104)

LINE INTERROGATE (DCWRITE Type - 104)

5-92

Required Parameters/Fields

The minimum message size is 16 words. A message parameter and the following
are required:

Word Field Value Description

0 [47:08] 104 Type.

[39:16] Variant, not used.

[23:24] LSN or DLS number.

Explanation

The LINE INTERROGATE DCWRITE function requests information about current
line status. Refer to the "LINE INTERROGATE RESULT (Class = 24)" message in
the "MCS Result Message Formats" section for a description of the result
indication of the contents.

An MCS can use this DCWRITE function to determine the status of any line in the
data comm network, whether or not it controls any stations on the line.

The LINE INTERROGATE DCWRITE function is intercepted when performed on a
pS,eudostation that has a fully participating MCS. The DCWRITE function must be
performed by the MCS that currently controls the station. The intercepted
messag-es are placed in the primary queue of the fully participating MCS.

Example

ALLOCATE(MSG,16);
MSG[O] := LSN & l04,~ [47:8];
RESULT := PCWRITE(MSG);

8600 0841-000

FORCE LINE NOT READY (DCWRITE Type = 105)

FORCE LINE NOT READY (DCWRITE Type - 105)

Required Parameters/Fields

The minimum message size for this DCWRITE function is eight words. A message
parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[23:24]

Value Description

105 Type.

LSN or DLS number.

The FORCE LINE NOT READY DCWRITE function is identical to that of the
MAKE LINE NOT READY CDCWRITE Type = 97) DCWRITE function.

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 105 [47:8];
RESULT:= DCWRITE(MSG);

8600 0841-000 5-93

SWAP LINES (DCWRITE Type = 128)

Reconfiguration Request DCWRITE Types
Reconfiguration requests allow the data comm environment to be dynamically
modified. Reconfiguration has been implemented in such a fashion as to allow all
data comm functions not directly affected by any reconfiguration request to
continue in parallel with that request and to allow resumption of activities for
LSPs, lines, and stations that were directly affected after completion of the
request. Reconfiguration requests cause the NSP and operating system tables to
be updated in memory and the same changes to be reflected in the
DAT ACOMINFO fHeon disk, so that subsequent reinitialization of data comm
accurately reflects the new configuration. A request for reconfiguration invokes
DCRECON as an independent runner (if it is not already running) and enqueues
the request for the reconfiguration routine. Multiple requests for reconfiguration·
are processed serially, although in parallel with other data comm activity
wherever possible. No initialization of NSPs occurs during the processing of a
given request; the initialization remains pending until the completion of the
request in progress.

All message control systems affected by any reconfiguration request (whether the
request for reconfiguration was issued by that MCS or not) are notified of any
successfully completed reconfiguration. An affected MCS is determined to be any
MCS currently attached to one or more stations whose relative NSP number, line
number, or station number was changed as a result of a reconfiguration request.
Affected message control systems receive an exact copy of the LSP EXCHANGE
RESULT (Class = 8) message, the SWAP LINE RESULT (Class = 10) message, or
the MOVE/ADD/SUBTRACT STATION (Class = 11) message sent to the original
requesting MCS, as well as one or more DLSUPDA TE RESULT (Class = 12)
messages pertinent to the stations known to each MCS.

SWAP LINES (DCWRITE Type = 128)

5-94

Required Parameters/Fields

The minimum message size required for the SWAP LINES DCWRITE function is
eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 128 Type.

[39:16] 0 Lines are left NOT READY after reconfiguration
is completed.

1 Lines are left READY after reconfiguration is
completed.

[23:24] LSN or DL number of the first line.

7 [23:24] DL number of the second line.

8600 0841-000

SWAP LINES (DCWRITE Type = 128)

Explanation

The SWAP LINES DCWRITE function allows an MCS to logically swap two lines
and includes any and all stations contained on each of the lines. The requesting
MCS receives a SWAP LINES RESULT (Class = 10) message in its primary queue,
which signifies completion of processing of the request. If no errors occurred, one
or more DLS UPDATE RESULT (Class = 12) messages can have been issued to'
the primary queue of the MCSs owning stations on the lines.

If the first line has stations on it, the MCS must control at least one of them. If
either line is DIALOUT, both must be DIALOUT.

Example

ALLOCATE(MSG,8);
MSG[O] := LSN & 128 [47:8] & 1 [39: 16];
MSG[7] := 0 & 1 [23:1] & DL [22:15];
RESULT := DCWRITE(MSG);

8600 0841-000 5-95

EXCHANGE LSPS (DCWRITE Type = 129)

EXCHANGE LSPS (DCWRITE Type - 129)

5-96

Required Parameters/Fields

A message parameter and the following are required:

Word

o

Explanation

Field

[47:08]

[39:16]

[26:01]

[25:01]

[24:01]

[22:07]

[15: 16]

Value

129

o

Description

Type.

Variant field, as follows:

The target NSP can be uninitialized, but paths
to LSPs being exchanged onto that NSP are
tested for availability.

1 If the target NSP' is uninitialized, paths to LSPs
being exchanged onto it are to be tested for
availability. The value of this field is ignored if
MSG[0].[25:01] = 1.

0

1

0

1

The target NSP can be uninitialized.

The target NSP is initialized if required.

Lines on LSPs are left NOT READY after
reconfigu ration.

Lines on LSPs are left READY after
reconfigu ration.

Relative NSP number.

LSP mask.

The EXCHANGE LSPS DCWRITE function allows an MCS to transfer control of
any or all LSPs specified in the LSP alternates declaration to another NSP that
has an I/O path to the LSPs being exchanged.

Receipt of an LSP EXCHANGE RESULT (Class = 8) message signifies that
processing of the request has completed. The LSP mask in MSG[0].[15:16] is
updated in the LSP EXCHANGE RESULT (Class = 8) message to reflect any LSPs
that failed to initialize successfully after the transfer to the recipient NSP. One or
more DLS UPDATE RESULT (Class = 12) messages could be issued to the
primary queue of the MCS as a co'nsequence of this DCWRITE type.

If [0].[25:01] = 0, the LSP exchange. occurs regardless of the state of the target
NSP.

If [0].[25:01] = 1, the target NSP is initialized if it isnot running. If initialization
is required and fails because of a hardware condition, error 87 (uninitialized
NSP) is returned.

.8600 0841-000

EXCHANGE LSPS (DCWRITE Type = 129)

The value in the field [0].[26:01] is tested. If [0].[25:01] = 1, the value in [0].[26:01]
is ignored.

If [0].[26:01]= 0 and the target NSP is uninitialized, the availability is tested of a
. path to each LSP that is to be exchanged onto that NSP.

If [0].[26:01] = 1 and the target NSP is uninitialized, the path tests are
overridden, and the subject NSP does not have I/O requests issued to it.

Example

ALLOCATE(MSG,8);
MSG[O] := LSPMASK & 129 [47:8] & 1 [39:16] & NSPNR [22:7];
RESULT := DCWRITE(MSG);

8600 0841-000 5-97

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

MOVE/ADD/SUBTRACT STATION (DCWRITE Type - 130)

Required Parameters/Fields

The minimum message size for the MOVE/ADD/SUBTRACT STATION DCWRITE
function is eight words. A message parameter and the following are required:

Word Field Value Description

0 [47:08] 130 Type.

[39:16] Variant field, as follows:

[25:01] 0 Station attributes are not updated.

1 Station attributes are updated as specified.

[24:01] 0 The station is left NOT READY after
reconfiguration is completed.

1 The station is left READY after reconfiguration
is completed.

[23:24] The current LSN or DLS· number.

7 [23:01] 0 The station is to be subtracted. MSG[7].[22: 15]
is irrelevant.

1 The station is to be added or moved.
MSG[7].[22: 15] is the receiving DL number.

MSG[O].[25:01] = 1

5-98

The following optional information is required if MSG[O].[25:01] = 1:

Word Field

8

[39:08]

[31:08]

MSG[NDLIITERMINX]

MSG[NDLlILlNEINX]

Description

New line attributes.

NDLIITERMINX is the index within MSG of the
name of the terminal with the required logical
station attributes.

NDLlILlNEINX is the index within MSG of the name
of the line with the required physical line
attributes.

The name of the terminal with the required logical
station .attributes for the station that is being
moved or added.

The name of the line that has declared physical
attributes for the empty line to which the station is
being moved or added.

8600 0841-000

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

Explanation

The MOVE/ADD/SUBTRACT STATION DCWRITE function allows an MCS to do
one of the following:

• Move stations from one line to another

• Assign a station to a line where it had no prior line assignment

• Remove a station from a line (thus, leaving it with no line assignment)

If MSG[7].[23:01] is equal to 0, MSG[7].[22:23] does not contain a DL number and a
subtraction of the station from a line is indicated, which leaves the station with
no line assignment. In the event of such a pure subtraction, if any requests are
queued for the station, they are returned in the current message queue of the
station as RECALL MESSAGE (Class. = 6) messages, as though a RECALL'
MESSAGE (DCWRITE Type = 41) DCWRITE function had been performed by the
requesting MCS. Receipt of aMOVE/ADD/SUBTRACT STATION (Class = 11)
message in the primary message queue of the requestingMCS signifies completion
of the request. A DLS UPDATE RESULT (Class = 12) message could also be
placed in the primary message queue of the MCS as a consequence of the
MOVE/ ADD /SUBTRACT STATION DCWRITE function.

If MSG[0].[25:01] is equal to 1 and MSG[7].[23:01] is not equal to 0, the line
attributes designated in MSG[8] are applied to the new line. In a particular
attribute field in MSG[8] is 0, the current line attribute is not modified. Name
attributes must be designated in EBCDIC and must terminate with a period. These
name attributes must correspond to valid nondefault names in the
DATACOMINFO file.

The maximum number of stations per line is 255.

If MSG[O].[25:01] = 1, a line cannot be named (that is, the index NDLIILINEINX
must be 0) if the target line has stations on it. A line can be named only if the
target line is empty.

Physical Attributes

The physical attributes of the target line can be mapped from those of the source
line from which a station is being moved if the following requirements are met:

• MSG[0].[25:01] = 1.

• There are no stations on the target line.

• The target line is different from the source line.

• No line is named in the request (the index NDLIILINEINX is 0).

The changes made to the physical connection characteristics of the target line
must be within the scope of the hardware settings of the line adapter and
electrical interface (EI). Thus, a character-oriented line cannot be changed to a
bit-oriented line and vice versa, a private line cannot be changed to a switched
line and vice versa, and an autodial line cannot be changed to an autoanswer line

8600 0841-000 5-99

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

5-100

and vice versa. However, a single line adapter can be used alternately with
asynchronous· and synchronous modems if they are character-oriented and of
similar switching characteristics.

The following is a list of physical attributes copied from the named line (or
source line) to the target line:

• CRC polynomial

• CRC polynomial initial setting

• CRC polynomial final setting

• Mode (async, sync, or bit-sync)

• Vertical parity (mode = async or sync)

• Horizontal parity (mode = async or sync)

• BCS type (mode = async or sync)

• Stop bits (mode = async)

• Bit rate (that is, line speed)

• Sync character (mode = sync)

• DLE character (mode = sync)

• Address mode (mode = bit-sync)

• Control mode (mode = bit-sync)

• CLASS number

• Translate table

• Receive delay

• Transmit delay

• Receive timeout

• DPR delay for ACU

• Set digit delay for ACU

• Secondary address (mode = bit-sync)

• Function (mode = bit-sync)

• Disconnect action on loss of DSR

• Receive ready

• End of number for ACU

Whether MSG[0).[25:01) = 1 or 0, the transmit delay associated with the station
being added or moved is imposed on the target line if that delay is longer than
that already in use on the target line.

8600 0841-000

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

Logical Attributes

If MSG[O].[25:01] = 1, the station is being moved or added, and there is a terminal
named in the request (NDLIITERMINX is not zero), then logical characteristics of
the station are altered to match those associated with the named terminal.

The following is a list of logical attributes that are copied from the named
terminal to the station being moved or added:

• MAXINPUT message size

• MAXOUTPUT message size

• SCREEN

• WRAPAROUND

• LINEWIDTH

• PAGESIZE

• PAGECOUNT

DCWRITE Errors

The following DCWRITE errors can be reported for the MOVE/ADD/SUBTRACT
STATION request when MSG[O].[25:01] = 1:

Number Meaning

8600 0841-000

73 The message was less than or equal to nine words in length although
MSG[0].[25:01] = 1.

79 The line name or terminal name was submitted in a bad format or without a
terminating period.

92 During the reconfiguration, the station information was not found in the
DATACOMINFO file.

98 There was no room on the target line for the station being moved or added.

107 The MSG[8].[31:08] (NDLlILlNEINX) value or the MSG[8].[39:08]
(NDLIITERMINX) value indicated a word out~ide the request message.

108 The terminal specified by the terminal name was not found.

110 The line specified by the line name was not found.

113 The algorithm identities associated with the station, the named line (if
present), the source line (if appropriate), and the target line were not the
same.

114 The switchable attributes (PRIVATE, DIALOUT, and AUTOANSWER) of the
target line do not conform to those of the named line (if present), or to those
of the source line in the case of a station move with no named line.

continued

5-101

MOVE/ADD/SUBTRACT STATION (DCWRITE Type = 130)

5-102

Number

125

126

171

173

174

195

Examples

Meaning

The ADD STATION or MOVE STATION request included a named line when
the target line was already supporting stations.

The SUBTRACT STATION request included a terminal name and
MSG[O].[25:01] = 1. (The change of station logical attributes is appropriate
only when not making a null line assignment.)

During the reconfiguration, an I/O error occurred or the link to the
DATACOMSUPPORT library failed.

During the move or subtract, the station could not be made NOT READY,
and the line/LSP could not be cleared.

During the reconfiguration, the target NSP did not respond correctly while
structures were being added to it.

A bit-oriented line cannot be changed into a character-oriented line and vice
versa.

ALLOCATE(MSG,8);
MSG[O] := LSN & 130 [47:8] & 1 [39: 16];
MSG[7] := 0 & 1 [23:1] &89L [22:15];
RESULT := DCWRITE(MSG);

ALLOCATE(MSG,11);
MSG[O] := LSN & 130 [47:8] & 3 [39:16];
MSG[7] := 0 & 1 [23:1] & DL [22:15];
MSG[8] := 0 & 20 [23:8] % NEW ADAPTER TYPE

& 9 [15:8]; % NEW TERMINAL NAME INDEX
REPLACE POINTER(MSG[9],8) BY ITERMINAL29.";
RESULT := DCWRITE(MSG);

8600 0841-000

UPDATE LINE ATTRIBUTES (DCWRITE Type = 131)

UPDATE LINE ATTRIBUTES (DCWRITE Type - 131)

Required Parameters/Fields

The minimum message size for the UPDATE LINE ATTRIBUTES DCWRITE
function is nine words. A message parameter and the following are required:

Word

o
7

8

Field

[47:08]

[23:24]

[23:01]

[22:07]

[15:08]

[31:08]

Value Description

131 Type.

DL number, as follows:

1

Relative NSP number.

Line number.

NDLlILINEINX is the index
within MSG of the name of
the line.

The word MSG[NDLIILINEINX] is the name of the line.

Explanation

The UPDATE LINE ATTRIBUTES DCWRITE function allows an MCS to modify
operations parameters for a particular line. The line update is performed for the
specified line, and if any stations exist on the line, the line is left READY.

The only-field in MSG[8] that is not ignored is [31:08] (NDLIILINEINX). If this
field contains 0, error 107 is returned to indicate that the request was incomplete.
The use of the line name referenced by NDLIILINEINX allows the requestor to
modify the connection characteristics of a line in a manner consistent with the
hardware strappings on the line adapter.

The following is a list of physical attributes copied from the named line to the
target line:

• CRC polynomial

• CRC polynomial initial setting

• CRC polynomial final setting

• Mode (async, sync, or bit-sync)

• Vertical parity (mode = async or sync)

• Horizontal parity (mode = async.or sync)

• BCS type (mode = async or sync)

• Stop bits (mode = async)

• Bit rate (that is, line speed)

8600 0841-000 5-103

UPDATE LINE ATTRIBUTES (DCWRITE Type - 131)

• Sync character (mode = sync)

• DLE character (mode = sync)

• Address mode (mode = bit-sync)

• Control mode (mode = bit-sync)

• CLASS number

• Translate table

• Receive delay

• Transmit delay

• Receive timeout

• DPR delay for ACU

• Set digit delay for ACU

• Secondary address (mode = bit-sync)

• Function (mode = bit-sync)

• Disconnect action on loss of DSR

• Receive ready

• End of number for ACU

DCWR ITE Errors

5-104

The following DCWRITE errors can be returned:

Number

73

76

77

79

91

Meaning

The message was less than or equal to nine words in length.

The value of the DLS number indicated an invalid NSP-relative number.

The value of the DLS nUlilber 'indicated an invalid line number.

The line name was submitted in a bad format or without a terminating
period.

The target line had stations on it, and none of them were associated with the
requestor MCS. None of these stations has to be attached to the requestor
MCS: the MCS number associated with a station has to be the same as that
of the requestor MCS for at least one of the stations on the target line.

107 The value in MSG[8].[31:08] (NDLlILINEINX) was 0 or indicated a' word
outside the message.

110 The line specified by the line name was not found.

113 The algorithms associated with the target line and the named line were not
the same.

continued

8600 0841-000

UPDATE LINE ATTRIBUTES (DCWRITE Type = 131)

Number Meaning

114

171

176

195

There was a mismatch between switch attributes of the named line and of
the target line: both must be either PRIVATE, DIALOUT, or AUTOANSWER.

During the reconfiguration, an I/O error occurred or the link to the
DATACOMSUPPORT library failed.

There was an incompatibility found between the named line and the target
line other than those reported specifically.

A bit-oriented line cannot be changed into a character-oriented line and vice
versa.

Example

8600 0841-000

ALLOCATE(MSG,ll);
MSG[O] := 0 & 131 [47:8];
MSG[7] := 0 & 1 (23:1] & DL [22:15];
MSG[8] := 0 & 2 [22:7] & 9 [7:8];
REPLACE POINTER(MSG[9],8) BY "NEWMODEM.";
RESULT := DCWRITE(MSG);

5-105

Section 6
MCS Result Message Formats

This section contains the following topics:

• General result message formats

• Specific result message formats

• Error result message format

General Result Message Format
Result messages generated by the data comm system can be inserted periodically
into the primary queue or current queue of an MCS. The class of each message is
identified by a unique value in the class field of the message. In most cases, the
class indicates the meaning of the result message and the format of the message.
In one case (Result Class = 99), the class is supplemented by the result-byte
index to indicate the meaning and format of the message.

In many cases, a result message is generated when the operating system or the
NSP merely modifies certain fields within the original DCWRITE request message.
In other cases, the result message is created· spontaneously.

The format of these result messages varies somewhat from class to class, but
generally appears as in Table 6-1.

Word

[0]

[1]

Table 6-1. General Message Format

Field

[47:08]

[39:16]

[23:24]

[47:08]

[39:08] to [32:01]

[31:08]

Description

Class field.

Variant field.

LSN-OLS number field.

Result-byte index field.

TOGGLES: [39:01] = TOGGLE [7],
[38:01] = TOGGLE [6], and so on until
[32:01] = TOGGLE [0].

Last error flag set in MSG[I].[23:24] (might
not always be turned on).

continued

8600 0841-000 6-1

General Result Message Format

Word

[2]

[3]

[4]

[5]

[6] to [N]

Table 6-1. General Message Format (cont.)

Field

[23:24]

[47:08]

[39:16]

[23:24]

[47:24]

[23:08]

[15:08]

[07:08]

[47:24]

[23:24]

[27:01]

[26:27]

Error flag field.

Retry count field.

Text size. field.

Description

Transmission number field.

Time field.

Tally [0].

Tally [1].

Tally [2].

Message number field.

Original DCWRITE type (the original value in
MSG[0].[47:24] when the DCWRITE function
was called).

1 = Sequence number present.

Sequence number.

Text

The meanings of the fields listed in Table 6-1 follow. These meanings apply to
the general case. Meanings that differ in particular result messages are presented
in the discussions of the individual result messages later in this section.

Class Field (MSG[O].[47:08])

6-2

The class field determines the way in which the remainder of the message is
interpreted. For example, if MSG[O].[47:08] = 0, the message contains "good"
(error-free) input from the NSP. The values for this field are presented in Table
6-2.

Class

00

01

02

03

Table 6-2. Message Classes

Meaning

GOOD INPUT

STATION EVENT

FILE OPEN

OBJECT JOB OUTPUT

continued

8600 0841-000

General Result Message Format

Table 6-2. Message Classes (cont.)

Class Meaning

04 FILE CLOSE

05 GOOD RESULT

06 RECALLED MESSAGE

07 SWITCHED LINE STATUS RESULT

08 LSP EXCHANGE RESULT

09 LINE STATUS RESULT

10 LINE SWAP RESULT

11 MOVE/ADD/SUBTRACT STATION RESULT

12 DLS UPDATE RESULT

13 MESSAGE FROM ANOTHER MCS

14 NSP TERMINATED

15 INTERROGATE STATION RESULT

16 TRANSFER STATION CONTROL RESULT

17 SEND TO MCS RESULT

18 SEND TO STATION RESULT

19 UPDATE LINE ATTRIBUTES

21 MESSAGE FROM CONTROLLER

24 LINE INTERROGATE RESULT

25 OBJECT JOB INPUT REQUEST

29 INTERCEPTED MESSAGE RESULT

30 NSPINITIALIZED RESULT

32 POWER OFF PENDING RESULT

80 ODT MODE SWITCH NOTICE RESULT

81 INPUT FROM AN ODT RESULT

99 ERROR MESSAGE

Variant Field (MSG[O].[39:16])

The variant field is used for qualification, variations, or additional information
concerning certain message types. Specific values or interpretations of the
variant field are presented in this section wherever applicable.

8600 0841-000 6-3

General Result Message Format

LSN Field (MSG[O].[23:24])

Most result messages received by an MCS contain an LSN in this field, but some
can contain a DLS number or other quantity depending on the type of result
message.

Result-byte Index Field (MSG[1].[47:08])

Most nonerror messages received by an MCS have a result-byte index value equal
to O. A nonzero value usually implies an error detected by the NSP (see
interpretation of this field for the Class == 99 error result message). Deviations
from this practice are described in this section wherever applicable.

Toggle Field (MSG[1].[39:08])

An NDLII algorithm can store information in this field by setting the
REQUEST. TOGS attribute. The interpretation of these bits by the MCS is
determined by programming convention and agreement between the MCS author
and the NDLII algorithm author.

Last Error Flag Set Field (MSG[1].[31:08])

In most cases, the last error flag set field contains the bit number of the bit most
recently turned on in the error flag field (MSG[1].[23:24]) as a binary value. That
is, if bit 6 was the last bit turned on by the NSP in the error flag field, .
MSG[1].[31 :08] = 6. MSG[1].[31 :08] = 4FF if MSG[1].[23:24] = O.

Error Flag Field (MSG[1].[23:24])

6-4

The error flag field indicates any errors or situations encountered by the NSP
while attempting to honor this particular request (often, but not necessarily, as
the result of an MCS-requested DCWRITE). Depending on several factors, bits can
be turned on in this field even in messages that are not error messages. For
example, an error situation might have occurred, but the NDLII algorithm was
able to achieve recovery with subsequent retry measures, or the NDLII algorithm
might have decided to perform a SENDHOST input instead of a SENDHOST error
on encountering an irrecoverable error condition. (This practice can be useful in
debugging NDLII algorithms, butis not recommended for final code.) The
interpretation of the error flag field is shown in Table 6-3.

Note that the ERROR· RESULT message (class = 99) also has an error result field.

8600 0841-000

General Result Message Format

Table 6-3. Error Flag Values

Bit Value Description

0 1 A timeout occurred (NOLII TIMEOUT).

1 1 A stop-bit error occurred (NOLII STOPBIT).

2 1 An lSP-buffer overflow occurred (NOLII OVERRUN).

3 1 A break-on-input occurred (NOLII FRAMEABORT).

4 1 A disconnect occurred (NOLII DISCONNECT).

5 1 A break-on-output occurred (NOLII FRAMEABORT).

6 1 ' A vertical character parity error occurred (NOLII PARITY).

7 1 A horizontal parity (BCC or CRC) error occurred (NOLII
BCSERROR).

8 1 An address-character error occurred (NOLII AOORESSERROR).

9 1 A transmission-number error occurred (NOLII TRANSERROR).

10 1 A format error on input occurred (NOLII FORMATERROR).

11 1 An output was not acknowledged (NOLII NAKFLAG).

12 1 The first character of the message contains the control character
of the station (as defined in NOLII or NOLII bit-variable
CONTROlMESSAGE, or set by MCS).

13 1 A WRU (who-are-you) was received (NOLII WRUFLAG).

14 1 A sequence number overflow occurred (NOLII
SEQUENCEERROR).

15 1 The message is to be acknowledged (ACK).

16 1 A NAK-ON-SElECT occurred (NOLII NAKONSElECT).

17 1 An ENO-OF-BUFFER (message overflow) occurred (NOLI I
ENOOFBUFFER).

18 1 A lOSS-OF-CARRIER occurred (NOLII lOSSOFCARRIER).

20 1 A station or line is NOT REAOY.

21 1 An idle condition was detected on a bit-oriented line (NOLII
IOlEOETECT).

22 (Reserved for expansion.)

23 (Reserved for expansion.)

Retry Count Field (MSG[2].[47:08])

The retry count field contains the number of retries that remain at the time the
NSP finished the request. The validity and value of this field rest on the

8600 0841-000 6-5

General Result Message Format

programming conventions employed by the author of the NDLII algorithm.
Normally, the NDLII programmer decreases the retry count by 1 for each
unsuccessful attempt at an operation in the NDLII algorithm until RETRY equals
0; a SENDHOST error or FINISHREQUEST statement is then performed.

Text Size Field (MSG[2].[39:16])

The text size field is valid for messages that constitute input (implied or
otherwise). This field contains the number of bytes of meaningful text stored as
input by the NDLII algorithm (starting in the left character position of MSG[6], 6
characters per word).

Transmission Number Field (MSG[2].[23:24])

The transmission number field is valid for messages that constitute input (implied
or otherwise) from the NSP (a station) where the station in question uses
transmission number conventions. The transmission number received with this
input is stored as three EBCDIC numeric characters.

Time Field (MSG[3].[47:24])

The time field, if 0 initially, contains the time (in 60ths of a second) at whichthe
NSP returned the result or at whichthe central system received this message from
the NSP. The form of this value is equivalent to that obtained as TIME(l) by the
ALGOL TIME function intrinsic. (Refer to "Arithmetic Intrinsic Names" in the
A Series ALGOL Program1Y!ing Reference Manual, Volume 1: Basic
Implementation.)

TALLY[O], TALLY[l], and TALLY[2]

These tally fields are MSG[3].[23:08], MSG[3].[15:08], andMSG[3].[07:08],
respectively. The interpretation of these fields is analogous to that for the
togglefield (MSG[1].[39:08]).

Message Number Field (MSG[4].[47:24])

6-6

The message number field is discussed in "DCWRITE Message Format" in the
"DCWRITE Information" section.The values in this field for messages other than
those generated by an MCS by use of the DCWRITE function are undefined except
for the OBJECT JOB OUTPUT (Result Class = 3) message or the RECALLED
MESSAGE (Result Class = 6) message that corresponds to a (Result Class = 3)
message; in those cases, the message number field contains the FRSN .of the
originating file.

8600 0841-000

General Result Message Format

Original DCWRITE Type Field (MSG[4].[23:24])

If this message originally came from an MCS by use of the DCWRITE function (or
as a result of object job output, where the MCS elected not to participate in object
job I/O), the original DCWRITE type field (MSG[0].[47:08]) and DC WRITE variant
field (MSG[O].[39:16]) appear in this field. Input messages obtained because a
station was enabled have the ENABLE INPUT type value (35) in [23:08] of this
field.

Sequence Number Present Field (MSG[5].[27:01]

A value of 1 in this field indicates that there is a valid value in the sequence
number field.

Sequence Number Field (MSG[5].[26:27])

The sequence number field is set from the sequence-result field in the result.
message from the NSP, if the result class is equal to SEQUENCE RESULT.

Text (beginning at MSG[6])

Text appears in EBCDIC character form, left justified, starting in relative word 6
of the message, six characters per word. For input if translation is necessary, the
NSP and LSP perform the translation.

8600 0841-000 6-7

Specific Result Message Formats

Specific Result Message Formats

6-8

The following describes the ways in which the formats and meanings of the
various result message classes differ from the general case. Refer to the
beginning of this section for the description of the general case.

The current queue of a station is, by default, the primary queue of the controlling
MCS until (or unless) a CHANGE CURRENT QUEUE (Type = 32) DCWRITE is
performed that names a queue other than the primary queue of the MCS. Also, in
the case in which the current queue of the station and the primary queue of the
MCS are not the same, the settings of the option bits MSG[O).[39:16) in the
STATIONATTACH (Type = 1), CHANGE CURRENT QUEUE (Type = 32), and
STATIONASSIGNMENT TO FILE (Type =64) DCWRITE types assume an
important role in the determination of ultimate queue destinations for the various
types of result messages that an MCS can receive.

In the following descriptions of specific result message formats, this important
information is not restated except in cases of special interest. As an aid to
clarification and understanding of the following material, you should occasionally
review the option bits (refer to "STATION ATTACH (DCWRITE Type = 1)" in
the "DCWRITE Information" section). It is also important to realize that an MCS
might never see result messages of certain classes for a given station because the
MCS might have elected to have the messages discarded and not returned.

DCALGOL is a constantly changing language; changes are made primarily through
the addition of new functions, new statements, new DCWRITE types, and new
result message' classes. The new DCWRITE types cannot cause a problem with an
old MCS. However, each MCS should be written so that new result message
classes do not cause problems. That is, if an MCS encounters' a result message in a
current queue or its primary queue with a message class that is unrecognized by
the MCS, the MeS should discard the result message and continue processing.

8600 0841-000

GOOD INPUT RECEIVED (Result Class = 0)

GOOD INPUT RECEIVED (Result Class - 0)

Message format

Word

o

Explanation

Field

[47:08]

[29:01]

[23:24]

Value

o
1

Description

Class.

More blocks to; follow this one.

LSN.

Receipt of a message of Class = 0 in the current queue of the station is a direct
result of an NDLII algorithm performing a SENDHOST input. The input might
have been initiated because of a READ-ONCE ONLY (Type = 34) DCWRITE (in
which case, MSG[4].[23:08] = 34) or because the station has been enabled (in
which case, MSG[4].[23:08] = 35). In the former case, the GOODINPUT RECEIVED
message space is the same as presented in the READ-ONCE ONLY DCWRITE. If
the station is not enabled for input and no outstanding READ-ONCE ONLY
requests exist in the station queue of the station, all further input information
received from a station is discarded until the station is enabled or another
READ-ONCE ONLY request is issued for the station.

Text, if any, appears in MSG[6] through MSG[N] and is valid information for a
total-of-text size field (MSG[2].[39:16]) characters.

8600 0841-000 6-9

STATION EVENT (Result Class = 1)

STATION EVENT (Result Class - 1)

6-10

Message format

Word

0

1

6 to
end

Field

[47:08]

[39:16]

[23:24]

[31:08]

[23:24]

Explanation

Value Description

1 Class.

o Input event.

3 New station activity.

LSN.

The switched status of the line (if this message is a
new station activity result).

The error flag field if this MESSAGE is an input event
result, or the DLS number if this message is a new
station activity result.

The input text is contained in these fields if the
message is an input event. The station name is
contained in these fields in display form (for example,
nv lONE) if the message is caused by new station
activity.

When an MeS receives a STATION EVENT message from the system, a
noteworthy event has occurred on one. of the stations that this MeS controls.

An input event (MSG[O].[39:16] = 0) result message signifies to the MeS that at
least one of the following four cases must have occurred:

I. A station break on input occurred. Bit 3 is turned on in the error flag field
(MSG[I].[23:24]).

2. A station break on output occurred. Bit 5 is turned on in the error flag field
(MSG[I].[23:24]).

3. The NSP received the station NDLII-defined (or established by the MeS)
control character as the first character of the input text. Bit 12 is turned on
in the error flag field (MSG[I].[23:24]).

4. The station was disconnected.

Usually, more than one of these four conditions can be flagged in the error flag
field for any given input event message; however, this capability is determined to
some extent by the NDLII programmer.

The action that the MeS can take when it receives an input event message
depends on individual installation requirements. For example, if the MeS receives
an input event message in which MSG[I).[l2:01] = 1 (the message contains the

86000841-000

STATION EVENT (Result Class = 1)

station control character as the first character), the MCS might choose to treat
the message text in a different manner than other input messages.

If MSG[2].[39:16] does not equal 0, text exists in the message.

A new station activity (MSG[O].[39:16] = 3) message signifies to the MCS that a
station it controls has become active and attached where it had previously been
neither active nor attached. Receipt of the new station activity message is an
announcement of implicit station attachment. (Refer to "STA TION ATTACH
(DCWRITE Type = 1)" in the "DCWRITE Information" section and "FILE OPEN
(Result Class = 2)" in this section.) Therefore, a subsequent STATION ATTACH
DCWRITE is unnecessary unless options other than the default options are to be
exercised (refer to the variant in "STATION ATTACH (Result Type = 1)" in the
"DCWRITE Information" section). The name of the station in display form
appears beginning in MSG[6] and is left-justified. The DLS number of the station
appears in MSG[I].[23:24], the switched status for the line with which the station
is associated appears in MSG[I].[31:08], andthe LSN of the station appears in
MSG[O].[23:24]. The MCS then proceeds to deal with the station in the same way
that the MCS would deal with a station for which a successful STATION
ATTACH DCWRITE had been performed.

The message for new station activity is generated by the operating system when
it receives a message for a station that was previously unrecognized. Both
messages are then placed in the primary operating system queue. The new station
activity message appears first in the queue.

8600 0841-000 6-11

FILE OPEN (Result Class = 2)

FILE OPEN (Result Class - 2)

Message Format

Word Field Value Description

0 [47:08] 2 Class.

[26:01] 1 File is a direct file.

[25:02] File output tanking specification.

0 Unspecified.

1 None.

2 SYNC.

3 ASYNC.

[23:24] LSN.

1 [47:08] Switched line status.

2 [39: 16] Text size field.

3 [47:24] Time of day field.

6 [45: 14] Program mix number of the object job.

[25:02] File MYUSE attribute value.

1 Input.

2 Output.

3 10.

[23:24] FRSN, broken down as follows:

[23:10] File number (created at file open time)~

[13:14] RSN in the file.

7 [47:08] MCS number of the current controlling MCS.

[39:16] Record index into the DATACOMINFO file for the
.station.

[23:24] DLS number.

[23:01] 0 The station name has no current line assignment.

8 [47:08] The word index into MSG where the station name
(title) is found.

[39:08] The word index into MSG where the file INTNAME
is found.

[31:08] The word index into MSG where the title of the
program opening the file is found.

continued

6-12 8600 0841-000

Word Field

[23:08]

[15:08]

9 to end

Explanation

Value

FI LE OPEN (Result Class = 2)

Description

The word index into MSG where the file title is
found.

The word index into MSG where the job number
(in binary form, right-justified) of the program that
opens the remote file is contained.

The station name, file INTNAME program title, file
title, and job number are contained in these
words.

Receipt of a FILE OPEN message by an MCS indicates the opening of an object job
file that contains one of the stations controlled by the MCS. The MCS receives a
FILE OPEN message for each station contained in the file over which it has
control. The MCS then performs a STATIONASSIGNMENT TO FILE (Type = 64)
DCWRITE. In some cases such as a broadcast write, the object program can be
held up until a STATIONASSIGNMENT TO FILE (Type = 64) DCWRITE has been
received for each station in the file.

The value of the MYUSE file attribute informs the MCS that the file is opened
either input-only, output-only, or I/O. The job number occupies an entire word in
binary format. The station name, the file INTNAME, and the program title begin
at word boundaries in MSG and appear in display form (for example,
"TTY /ONE.") as a left-justified character string. Thus, a pointer expression that
points to the first character of the station name would appear as follows:

POINTER(MSG[MSG[8]. [47:8]]t8)

The text size field message is defined to be the number of characters from the
beginning of MSG[6] to the end of MSG[N], although this field usually is not a
string of legitimate characters. This practice allows a consistent calculation of
message size based on the textsize field. The station name (title), the file
INTNAME, the program title, and the file title are terminated by a period
followed by a fill of hexadecimal zeros, if necessary, up to the next word
boundary.

Station Transfer File Open

A FILE OPEN message is generated and sent to the MCS referenced by
PSEUDOMCSNRF when stations are transferred and are performing logical I/O.

8600 0841-000 6-13

FILE OPEN (Result Class = 2)

Message Format

Word Field Value Description

0 [47:08] .FILEOPENMSG.

[26:01] 1 . Flag for audit and debugging use.

[23:24] LSN of transferred station.

2 [39:16] 3 Text size.

6 [23:24] FRSN of the LSN.

6-14 8600 0841-000

OBJECT JOB OUTPUT (Result Class = 3)

OBJECT JOB OUTPUT (Result Class - 3)

Message Format

Word Field Value Description

0 [47:08] 3 Class.

[39:16] Carriage control bits.

[23:24] LSN.

2 [39:16] Number of bytes of text to be sent to the station.

4 [47:24] FRSN.

6 to Text (if any).
end

Explanation

Receipt of the OBJECT JOB OUTPUT message class by an MCS is a direct result
of an object job performing a WRITE statement directed to a station under the
control of the MCS. An MCS does not receive messages of this class unless bit 29
in the variant field was allocated by the MCS in the most recent CHANGE
CURRENT QUEUE (Type = 32), oraSTATIONASSIGNMENTTO FILE
(Type = 64) DCWRITE was performed for this station to indicate that the MCS
wishes to participate in I/O for the station. The format of this message is
identical to the WRITE (Type'= 33) DCWRITE message format. Changing the
type to WRITE (DCWRITE Type = 33) and passing the message to DCWRITE
causes the output to b~ sent to the station.

8600 0841-000 6-15

FI LE CLOSE (Result Class = 4)

FILE CLOSE (Result Class - 4)

Message Format

. Word

o

6

Field

[47:08]

[23:24]

[25:01]

[24:01]

[23:24]

Value

4

1

1

Description

Class.

LSN.

The second close result for asynchronous tanking.

The task has executed CLOSE but output is tanked;
the second CLOSE result will be sent when all output
has been completed.

FRSN.

The rest of the format is identical to that of FILE OPEN (Result Class = 2)
result.

Explanation

Receipt of the FILE CLOSE message by an MCS constitutes notification of the
closing of an object job file that included this station. The MCS receives a FILE
CLOSE message 'for each station in the file. The FRSN for the station in this file is
no longer valid; however, the station remains attached to the MCS. The FILE
CLOSE message, contains all the information about the station that is contained in
the FILE OPEN (Result Class = 2) message.

Action by the MCS is a matter of program convention. Unlike the FILE OPEN
message, the data comm system software neither expects nor requires any
particular DGWRITE response on the part of the MCS. However, if an MCS has
postponed opening other files on this station, the MCS can use the close result to
signal itself that another file can now be opened.

Station Transfer FI LE CLOSE

6-16

A FILE CLOSE message is generated and sent to the MCS referenced by
PSEUDOMCSNRF when stations are transferred and performing logical I/O.

Message Format

Word Field Value Description

0 [47:08] FILECLOSEMSG.
[26:01] 1 Flag for audit and debugging use.
[23:24] LSN of the transferred station.

2 [39:16] 3 Text size.
6 [23:24] FRSN of LSN.

8600 0841-000

GOOD RESULTS (Result Class = 5)

GOOD RESULTS (Result Class - 5)

Message Format

Word

o

4

Field

[47:08]

[23:24]

[23:24]

Explanation

Value

5

Description

Class.

LSN.

The original contents of MSG[0].[47:24] of the
DCWRITE request prior to the presentation of the
message to the NSP are contained in this word.

If an MCS chooses to receive all results from the NSP for a station, the results are
returned with a Class of 5 in the current queue (refer to the variant field in the
"STATION ATTACH (DCWRITE Type = 1)" in the "DCWRITE Information"
section). The type and variant fields (MSG[0].[47:24]) of the original DCWRITE
message are found in each result message in MSG[4].[23:24]. If the original
DCWRITE type (found in MSG[4].[23:08]) is one of the following switched line
requests, the message result returned is the SWITCHED STATUS (Type = 101)
message:

• DIALOUT (DCWRITE Type = 98)

• DISCONNECT (DCWRITE Type = 99)

• ANSWER THE PHONE (DCWRITE Type = 100)

• INTERROGATE SWITCHED STATUS (DCWRITE Type = 101)

However, if the original DCWRITE type (found in MSG[4].[23:08]) is the particular
switched line request SET/RESET AUTOANSWER (DCWRITE Type = 102), the
message result returned is the GOOD RESULTS (Result Class = 5) message.

The' error flag field can have one or more bits turned on in a result message, but
the request itself was honored by the NSP. That is, the NSP recovered
successfully from any conditions that it encountered. Resuits from OBJECT JOB
OUTPUT (Result Class = 3) messages are also returned to the MCS, even if the
MCS chooses not to participate in object job I/O but chooses to receive all results.

GOOD RESUL TS message~ are interpreted as the assurance that the operation
requested of the NSP was successfully completed. Examples are the MAKE
STATION READY (Type = 37) DCWRITE or the ENABLE INPUT (Type = 35)
DCWRITE. DCWRITE types that cause the creation of a GOOD RESULTS (Result
Class = 5) message are as follows:

• CHANGE CURRENT QUEUE (Type = 32) DCWRITE (if the text is not empty)

• WRITE (Type = 33) DCWRITE

8600 0841-000 6-17

GOOD RESULTS (Result Class = 5)

• ENABLE INPUT (Type = 35) DCWRITE

• DISABLE INPUT (Type = 36) DC WRITE

• MAKE STATION READY/NOT READY (Type = 37) DCWRITE

• SET APPLICATION NUMBER (Type = 38) DCWRITE

• SET CHARACTERS (Type = 39) DCWRITE

• SET TRANSMISSION NUMBER (Type = 40) DCWRITE

• RECALL MESSAGE (Type = 41) DCWRITE

• STATION DETACH (Type = 42) DCWRITE

• SET/RESET LOGICALACK (Type = 43) DCWRITE

• ACKNOWLEDGE (Type = 44) DCWRITE or WRITE AND RETURN
. (Type = 46) DCWRITE

• NULL STATION REQUEST (Type = 48) DCWRITE

• SET/RESET SEQUENCE MODE (Type = 49) DCWRITE

• SET/RESET AUTOANSWER (Type = 102) DCWRITE

Variant Field in Response to RECALL MESSAGE

6-18

If the original DCWRITE was RECALL MESSAGE (Type = 41), the variant field
MSG[0].[39:16] indicates whether or not any RECALLED MESSAGE
(Result Class =6) messages are recalled, as follows:

Word Field

o [39:16]

Value

o
1

Description

No messages exist to be recalled.

One or more messages that exist in the station queue
have been recalled. These messages are next in the
current queue of the station.

8600 0841-000

RECALLED MESSAGE (Result Class = 6)

RECALLED MESSAGE (Result Class - 6)

Message Format

Word

o

4

Field

[47:08]

[39: 16]

[23:24]

[23:24]

Explanation

Value

6

o

1

Description

Class.

This message is the last of those recalled by the
RECALL MESSAGE (Type = 41) DCWRITE.

This message is not the last of those recalled by the
RECALL MESSAGE (Type = 41) DCWRITE.

LSN.

The original contents of MSG[0].[47:24] of the
DCWRITE request prior to the presentation of the
message to the NSP. If the original content of
MSG[0].[47:081 prior to the presentation of the
message to the NSP was OBJECT JOB OUTPUT
(Result Class = 3), MSG[4].[47:24] contains the
FRSN.

If an MCS decides to discontinue output to a station (for example, because of an
excessively large number of errors) but decides to save all outstanding requests
queued for the station, the MCS can perform a RECALL MESSAGE (Type = 41)
DCWRITE. The queued requests are removed from the station queue on a first-in,
first-out basis and are placed in the current message queue of the station with
the result type equal to 6, thus preserving the integrity of time-ordered
sequencing.

8600 0841-000 6-19

SWITCHED STATUS RESULT (Result Class = 7)

SWITCHED STATUS RESULT (Result Class - 7)

Message Format

The format for this message is included in the description under "SWITCHED
STATUS FORMAT" in "ERROR RESULT (Result Class = 99)" in this section.

Explanation

The origin of the SWITCHED STATUS RESULT message one of the. following:

• The result of the DIALOUT (Type = 98) DCWRITE, the DISCONNECT
(Type = 99) DCWRITE, the ANSWER THE PHONE,(Type = 100) DCWRITE,
or the INTERROGATESWITCHED STATUS (Type = 101) DCWRITE

• An unrequested change of (switched) status automatically reported by the
NSP such as an unexpected disconnect or connection by the autoanswer
capability

6-20 86000841-000

LSP EXCHANGE RESULT (Result Class = 8)

LSP EXCHANGE RESULT (Result Class - 8)

Message Format

Word Field Value Description

0 [47:08] 8 Class.

[39:16] As originally presented to the EXCHANGE LSPS
(Type = 129) DCWRITE function.

[22:07] Relative number from which the LSPs were.
transferred.

[15: 16] Mask of the LSPs that were transferred and that
initialized successfully.

1 [47:08] 0 LSP exchange successfully completed.

not 0 Interpreted as for DCWRITE error values.

6 [31:08] NSPLSPINX is the index within MSG of the list of
new NSP /LSP hardware unit numbers and DLS
numbers.

[23:08] The exchanged relative NSP number.

[15:08] The number of LSPs exchanged and number of
additional words, starting with MSG[7].

[07:08] The MCS number of the requesting MCS.

7 and on Contains the following for each LSP:

[39:08] The relative LSP number.

[31:16] The mask of prior READY -made status for each
line (adapter) on LSP (0 = READY, 1 = NOT
READY); bit number = line (adapter)
number + 16.

[15:16] The mask of valid lines (adapters) for the LSP; bit
number = line (adapter) number.

NSPLSPINX Contains the following for each LSP exchanged:
to end

[47:16] The NSP hardware unit number on which the LSP
is now located.

[31:16] The LSP hardware unit number.

[15:01] 1 The NSP is available.

0 The NSP is not initialized.

[14:07] The relative number of the NSP.

[07:04] The relative number of the LSP.

[03:04] 0

8600 0841-000 6-21

LSP EXCHANGE RESULT (Result Class = 8)

6-22

These words are presented in the same order as those beginning at MSG[7]. The
LSP numbers in those words represent the LSP-relative numbers of the LSPs
before the exchange.

Explanation

All MCSs affected as a result of LSP exchanging are sent a Class = 8 result
message. If LSP exchanging cannot be accomplished for any reason, only the
requesting MCS receives a Class = 8 result message and MSG[1].[47:08] is
nonzero. (The interpretation of this error value can be derived from the
DCWRITE error values.) If MSG[1].[47:08] is 0, the LSP exchange was successfully
accomplished and information concerning the actual LSPs involved in the
exchange is found in MSG[61 through MSG[N1 (where N = 6 + MSG[6].[15:08]).
Line numbers, as indicated by the L in the DL number or the DLS number, are
actually 8-bit concatenations of 4-bit adapter numbers (where the relative LSP
number field comprises the four high-order bits, and the adapter number
comprises the four low-order bits).

The Class = 8 result information (from EXCHANGE LSPS (Type = 129)
DCWRITE) can be noted or discarded at the discretion of an MCS.

8600 0841-000

LINE STATUS CHANGE RESULT (Result Class = 9)

LINE STATUS CHANGE RESULT (Result Class - 9)

Message Format

Word Field Value Description

0 [47:08] 9 Class.

[23:24] LSN.

1 [20:01] 0 The line is READY.

1 The line is NOT READY.

7 [23:24] DL number.

Explanation

A LINE STATUS CHANGE RESULT message is always generated by the NSP as a
part of its response to the MAKE LINE READY DCWRITE (even if the line is
READY). A LINE STATUS CHANGE RESULT messageis generated by the NSP as
a part of its response to the MAKE LINE NOT READY DCWRITE if, and only if,
the line was READY prior to the MAKE LINE NOT READY DCWRITE.

Only one Class = 9 result message is generated. If the result was generated by a
MAKE LINE NOT READY (Type = 96) DCWRITE that specified a DL number
rather than an LSN, the result is returned to the MCS that controls the
lowest-numbered valid station on the line (not necessarily the MCS that
performed the original DCWRITE). The result is routed by the operating system
to the current queue of that station if the controlling MCS indicated that it is to
receive Class = 9 result messages. Otherwise, the operating system discards the
message.

8600 0841-000 6-23

SWAP LINE RESULT (Result Class = 10)

SWAP LINE RESULT (Result Class - 10)

6-24

Message Format

Word Field Value Description

0 [47:08] 10 Class.

[39:40] As originally presented to SWAP LINE (Type = 128)
DCWRITE.

1 [47:08] 0 The line swap successfully completed.

not 0 Interpreted as for DCWRITE error values.

6 The MCS number of the requestor.

7 [47:24] The DL number of the first or source line.

[23:24] . The DL number of the second or target line as
presented in the original request.

8 [47:16] The NSP hardware unit number of the source line.

[31:16] The LSP hardware unit number of the source line.

9 [47:16] . The NSP hardware unit number of the target line.

[31: 16] The LSP hardware unit number of the target line.

Explanation

All MCSs affected as a result of line swapping receive a SW AP LINE RESULT
message. If line swapping cannot be accomplished for any reason, only the
requesting MCS receives this message and MSG[I].[47:08] is not zero. If
MSG[I].[47:08] = 0, the line swap was successfully accomplished.

In addition, all affected MCSs receive DLS UPDATE (Result Class = 12) result
messages for all stations that have had their DLS number changed as a result of
the line swap.

8600 0841-000

MOVE/ADD/SUBTRACT STATION RESULT (Result Class = 11)

MOVE/ADD/SUBTRACT STATION RESULT (Result Class = 11)

Message Format

Word Field Value Description

0 [47:08] 11 Class.

[39:40] As originally presented to the MOVE/ADD/SUBTRACT
(Type = 130) DCWRITE.

1 [47:08] 0 MOVE/ADD /SU BTRACT successfully completed.

not 0 Interpreted as for DCWRITE error values.

6 The MCS number of the requestor.

7 [47:24] The DLS number of the station after the MOVE or
ADD; 0 for SUBTRACT.

[23:24] The DLS number of the station before reconfiguration;
o for an ADD.

8 [47:16] If a MOVE or an ADD, the NSP hardware unit number
of the new location of the station.

[31:16] If a MOVE or an ADD, the LSP hardware unit number
of the new location of the station.

9 [47:16] If a MOVE or a SUBTRACT, the NSP hardware unit
number of the old location of the station.

[31:16] If a MOVE or a SUBTRACT, the LSP hardware unit
number of the old location of the station.

Explanation

Unlike the LSP EXCHANGE RESULT (Result Class = 8) messages and the
SWAPLINE RESULT (Result Class = 10) messages, only the requesting MCS sees
the MOVE/ADD/SUBTRACT STATION RESULT message (since it is the only MeS
affected by this type of reconfiguration).

Receipt of this message with MSG[lJ.[47:08J = 0 signifies that the
MOVE/ADD /SUBTRACT request was successfully completed. IfMSG[11.[4 7 :08J is
not zero, an error was discovered and the interpretation of this field is the same
as that for DCWRITE error values.

8600 0841-000 6-25

DLS UPDATE RESULT (Result Class = 12)

DLS UPDATE RESULT (Result Class - 12)

6-26

Message Format

Word Field

0 [47:08]

[00:01]

6 [47:48]

7 to
end

[37:14]

[23:01]

[22:23]

Explanation

Value

12

0

1

0

1

Description

Class.

More Class = 12 messages are to follow.

The last 'or only Class = 12 message.

The number of entries in the following words.

Station information, as follows:

lSN.

The station has no line assignment.

, The DlS number for a station with a line assignment.

The new DlS number (if [23:01] = 1).

All MeSs (including the requesting MeS) affected by any reconfiguration request
receive one or more DLS UPDATE RESULT messages that contain information
pertinent to stations to which the MeS is currently attached and whose relative
NSP number, line number, or station number is altered during processing of a
reconfiguration request. The maximum number of entries for any given DLS
UPDATE RESULT message is 128. If MSG[O).[OO:OI) = 1 for a given DLS UPDATE'
RESULT message, this value signifies that this message is the last (and, perhaps,
only) message of its class for'the current reconfiguration request. An MeS can
note or discard at its discretion the information given in a DLS UPDATE RESULT
message. However, if an MeS is DLS-number-oriented (for any of a variety of
reasons), this information is of particular interest and should be noted.

8600 0841-000

INTER·MCS COMMUNICATE RESULT (Result Class = 13)

INTER·MCS COMMUNICATE RESULT (Result Class - 13)

Message Format

Word

o

Field

[47:08]

[23:24]

Explanation

Value Description

13 Class.

MCS number of the communicating MCS.

Receipt of this message class in the primary queue of an MCS signifies the
attempt of another MCS to communicate with the recipient MCS through an
INTER-MCS COMMUNICATE (Type = 3) DCWRITE.

The interpretation of, and action taken in, receipt of this message type depends
on mutually established conventions between the communicator and the recipient
MCSs.

8600 0841-000 6-27

STATION DETACHED (Result Class = 14)

STATION DETACHED (Result Class - 14)

6-28

Message Format

Word

0

1

Field

[47:08]

[39:16]

[23:24]

[23:24]

Explanation

Value

14

0

1

2

Description

Class.

The station was detached because the NSP
terminated.

The station was detached because of the action of the
fully-participating MCS.

The station was detached as a result of a modification
to the configuration made using the Interactive
Datacomm Configurator (IDC).

LSN.

DLS number.

Receipt of a STATION DETACHED result message signifies that the station is
detached from the MCS. Further attempts to work with the station result in error
values returned from calls on DCWRITE.

If word 0 [39:16] equals 0, the station is detached, because the NSP to which it
was connected terminated. In this case, a STATION DETACHED result message is
sent for each station on the NSP that is attached to an MCS.

If word 0 [39:16] equals 1, the station is detached by the fully-participating MCS.
The fully-participating MCS is the MCS that transferred the station to the current
owning MCS. If the former detaches the station or terminateS, the current owning
MCS receives a Class = 14 result message for the station.

If word 0 [39:16] equals 2, the station is detached because someone used the IDC
to modify the running configuration. In this case, it is possible that the station is

.. now under the control of a different MCS. This result is generated if an IDC
modification causes the station to no longer have a valid DLS number,or if IDC is
used to transfer the station to another MCS. Examples of IDC commands that may
have these effects are SUBTRACT STATION, SUBTRACT LINE, MOVE STATION,
MOVE LINE, MODIFY STATION, and MODIFY LINE. Refer to the A Series
Interactive Datacomm Conjigurator (IDC) Operations Guide for descriptions of
these commands.

8600 0841-000

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

INTERROGATE STATION ENVIRONMENT RESULT
(Result Class = 15)

Message Format

Word . Field Value Description

0 [47:08] 15 Class.

0-5 Interpretations applicable to the general message
format.

6 [23:08] The size of this message (in words).

[15:08] The number of entries in this message.

[07:08] The index to first word of the first entry.

Explanation

The INTERROGATE STATION ENVIRONMENT RESULT message is returned in
response to an INTERROGATE STATION ENVIRONMENT (Type = 4) DCWRITE
request.

An MCS can issue an INTERROGATE STATION ENVIRONMENT request to
inquire about the attributes of any station. The result indicates whether or not
the station is a pseudostation. The response also indicates whether an MCS has
requested full participation for the station.

Blanket interrogations can cause one or more Class = 15 message results to be
generated; each message contains one or more entries. An entry can consist of one
or more of the following types of information:

• Three or four words of station (logical) information from the operating
system tables and eight words of NSP station table information

• Two words of terminal (physical) information

• Two words of line information from the operating system tables, and four
optional words of NSP line table information

• One or more words of the station name

• One or more words of the terminal name

• An index word that provides pointers to the locations of each of the present
information types and an index to index word for the next entry in the
message (if any)

This particular message format was chosen so that when additional, desirable
information becomes available, MCSs that wish to use the additional information
can do so with minimal effort and MCSs that do not wish to use the new data are
not forced into reprogramming.

8600 0841-000 6-29

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

Explanation of Expanded Message Format

6-30

The expanded message format of the INTERROGATE STATION ENVIRONMENT
RESULT message is used because of the variety and quantity of information that
can be returned in this message.

This result message is an indexed structure. Figure 6-1 illustrates the path
through index words to obtain additional station, line, or terminal information.

MSG[6] always contains (among other items) the index of the index word of the
first entry. Each entry unconditionally has an index word that contains indexes
for its entry to the requested information contained in the entry. The index word
of an entry also contains the index of the word in the entry. In the special case in
which the value of the. index word (of the next index of the entry) is 0, no
further entries beyond the current entry in that message exist.

For the remaining index fields within the index word of an entry that contain 0,
the interpretation must be that the information was not originally requested and
therefore is not supplied. (Refer to "INTERROGATE STATION ENVIRONMENT
CDCWRITE Type = 4)" in the "DCWRITE Information" section to determine the
method of requesting the various types of information.)

Word 6 of the INTERROGATE STATION ENVIRONMENT RESULT message
contains the index to the first word of the first entry of the message. This first
word is referenced as the index word, MSG[INX], in Figure 6-1 and in the
message format. MSG[INX] holds the indexes to several first words of terminal,
station, or line information. The bit fields of the words referenced by the indexes
provide details of status and information requested.

The format of the message is illustrated in Figure 6-1. The format and meaning
of each bit field is explained following the figure.

8600 0841-000

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

MSG [0] - MSG [6]

I~ 0 1~1 1----"'2 ----3 -4 ---T-"S 1--
6

- --

\ I

[07:08]
:------,-----,-------r----,-- - - -

Size of
messag

MSG [INX] :=MSG[6]. [07:08]
(first entry index)

[47:08]

Terminal
Name
Index

I
I
I

Terminal
Name

[39:08]

Station
Name
Index

I
I
I
I
I
I
I

Station __ J
Name

[31 :08]

Line
Information

I

I
I
I
I
I
I

~ ••• rFmhL_J
~ ~

Number of '
entries in
message

Index to
1st word
1st entry

I

r------...J

[23:08]

Terminal
Information

I
I
I
I
I
I
I
I
I
I

[15:08]

Station
Information

I

[07:08]

Index to
Next
Entry

I

§
I~~~

First
VVord

~ ••• Tenth
~ VVord

~ __ ~ ••• Second
~ VVord

Figure 6-1. INTERROGATE STATION ENVIRONMENT RESULT Index Diagram

8600 0841-000 6-31

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

INX : = MSG[6].[07:08] (First Entry Index)

MSG[6].[07:08] has the following format:

Word

MSG[INX]

Field

[47:08]

[39:08]

[31:08]

[23:08]

[15:08]

[07:08]

Description

The index to the terminal name, if not zero.

The index to the station name, if not zero.

The index to the first word of line information (if 0, no entry).

The index to the first word of terminal information (if 0, no
entry).

The index to the first word of station information (if 0, no entry).

The index to the first word (index word) of next entry (if 0, this is
the last entry of the message).

The format of this word remains the same for the first word (index word) of each
subsequent entry, if any.

MSG[MSG[I NX]. [47:08]]

If the terminal name is requested, MSG[MSG[INX].[47:08]] is represented in display
form as six or fewer EBCDIC characters per word terminated by a period (for
example, "TD830E. ").

MSG[MSG[I NX]. [39:08]]

If the station name is requested, MSG[MSG[INX].[39:08)] is represented in display
form as six or fewer EBCDIC characters per word terminated by a period (for
example, "STATION lONE. ").

MSG[MSG[I NX]Q [31 :08]]

6-32

If the station has line assignment and line information is requested,
MSG[MSG[INX].[31:08)] consists of a 2-word or 5-word entry that comprises
several bit-fields. The interpretation varies depending on whether NSP line
information was requested.

8600 0841-000

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

Figure 6-2 illustrates the format of the INTERROGATE STATION
ENVIRONMENT RESULT message that is returned when NSP line table
information was, and was not, requested.

Status Word Status Word

Word 0 of NSP Line Table NSP Line Descriptor

Word 0 of NSP Line Table

Word 1 ofNSP Line Table

Hardware Unit Number Word

NSP Line Information Not Requested NSP Line Information Requested

Figure 6-2. Interpretation of MSG[MSG[INX].[31:08]]

The words contained in MSG[MSG[INX).[31 :08]] are explained in the following
discussion.

First Word: MSG[MSG[INX].[31:08]]

This is the status word and has the following format.

Field Value

[46:01] 1

[45:01] 1

[38:01] 1

[36:01] 1

[35:01] 1

[34:01] 1

Description

The line is NOT READY.

A line change is in progress (reconfiguration in progress).

A switched line error is encountered.

The line status is currently changing.

The line is connected.

Autoanswer is in force.

[33:01] 1 The line has an associated automatic calling unit (ACU); that is, it
can be dialed out.

[32:01] 1 The line is a switched line.

[31:08] The current number of stations on this line.

[23:08] The maximum number of stations allowed for this line.

8600 0841-000 6-33

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

Second Word: MSG[MSG[INX].[31:08]+ 1] (NSP Line Information Not Requested)

If NSP line information is not requested, this is word 0 of the NSP line table and
is the last word of the field. Word 0 of the NSP line table has the following
format:

Field

[47:01]

[43:01]

[41:01]

[40:01]

[31:08]

[23:08]

[15:08]

Description

The line is NOT READY.

The line is not connected.

line TOG[I].

line TOG[O].

The maximum number of stations on this line.

line TALLY[I].

line TALLY[O].

Second Word: MSG[MSG[INX].[31:08]+ 1] (NSP Line Information Requested) ,

6-34

If NSP line'information is requested, this word is the NSP line descriptor and is
followed by words 0 and 1 for the NSP line table and a word for the hardware
unit number. The NSP line descriptor has the following format:

Field

[31:01]

[30:01]

[28:01]

[27:01]

[26:01]

[25:01]

(24:01]

[21:01]

[20:01]

Description

The line is in a NOT READY PENDING state.

The line is in a SWITCHED ERROR state.

The line is busy in a switched request.

, The line is connected.

AUTOANSWER is in force.

The line has an associated ACU.

The line is a switched line.

The line is invalid.

The line is a synchronous line.

8600 0841-000

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

Third Word: MSG[MSG[INX].[31:08]+2] (NSP Line Information Requested)

This is word 0 of the NSP line table and has the following format.

Field

[47:01]

[43:01]

[41:01]

[40:01]

[31:08]

[23:08]

[15:08]

Description

The line is NOT READY.

The line is not connected.

Line TOG[1].

Line TOG[O].

The maximum number of stations on this line.

Line TALLY[1].

Line TALLY[O].

Fourth Word: MSG[MSG[INX].[31:08] + 3] (NSP Line Information Requested)

This is word 1 of the NSP line table. It is not used.

Fifth Word: MSG[MSG[INX].[31:08]+4] (NSP Line Information Requested)

This is the hardware unit number word and has the following format.

Field

[47:16]

[31:16]

[15:16]

8600 0841-000

Value

o

Description

The NSP hardware unit number if the station has a line
assignment; otherwise, O.

The LSP hardware unit number if the station has a line
assignment; otherwise, O.

6-35

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

MSG[MSG[INX].[23:08]]

If terminal information is requested, MSG[MSG[INX].[23:08]] consists of a 2-word
entry comprising several bit-fields that are interpreted as follows:

First Word: MSG [MSG [I NX]. [23:08]]

Field Value Description

[43:01] 1 The terminal is a screen device.

[42:01] 0 This is a regular station or a schedule station.

1 This is a pseudostation.

[41:02] MYUSE attribute (I = IN, 2 = OUT, 3 = 10).

[31 :16] The terminal line width.

[15:16] The terminal buffer size (MAXINPUT value).

Second Word: MSG[MSG[INX].[23:08] + I]

Field

[47:16]

[31: 16]

MSG[MSG[I NX]. [15:08]]

Description

Terminal PAGESIZE value.

Terminal MAXOUTPUT value.

If station information is requested, MSG[MSG[INX].[15:08]] is an entry of at least
four words comprising several bit-fields that are interpreted as follows:

First Word: MSG[MSG[INX].[15:08]]

Field Value Description

[47:01] 1 Station LOGIN=TRUE.

[46:01] 1 Station WRAPAROUND=TRUE.

[45:01] 1 Station SPO=TRUE.

[44:01] 1 Station is ENABLED.

continued

6-36 8600 0841-000

INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15)

Field Value Description

[43:01] 1 Station is NOT READY.

[42:01] 1 Station is ATIACHED.

[41:01] 1 Station change is in progress.

[40:01] 0 (RESERVED).

[39:01] 0 No MCS has requested full participation for this station.

1 An MCS has requested full participation for this station.

[38:01] 1 The station is capable of automatic sequence mode.

[37:08] The MCS number of the controlling MCS.

[29:14] The LSN.

[15:16] The line width of the station.

Second Word: MSG[MSG[INX].[15:08]+ 1]

Field Value

[47:08]

[39:01] 1

[38:01] 1

[37:01] 1

[36:01] 1

[35:01] 1

[34:01] 1

[33:01] 1

[32:01] 1

[31:08]

[23:24]

8600 0841-000

Description

The control character of the station (EBCDIC).

The MCS participates in object I/O.

Station event messages are sent to the current queue.

Station NOT READY results are sent to the current queue.

Messages beginning with the control character of the station are
sent to the current queue.

Errors are sent to current queue.

The MCS wants all results.

The station is transferred to another MCS.

Schedule station.

The RETRY count as specified in the DATACOMINFO file.

The DLS number of the station. If [23:01] = 0, the station has
no current line assignment.

6-37

INTERROGATE. STAT.ION ENVIRONMENT RESULT (Result Class = 15)

Third Word: MSG[MSG[INX].[15:08]+2] (NSP Information Not Requested)

If NSP station information is not requested, the third word contains the receive
and transmit address characters. The format of this word is as follows:

Field

[47:24]

[23:24]

Description

Receive address characters.

Transmit address characters.

Third Word: MSG[MSG[INX).[15:08)+2) (NSP Information Requested)

If NSP station information is requested, the third word contains the NSP station
descriptor. The format of this word is as follows:

Field Description

[47:08] Station priority.

[39:01] Station acknowledge.

[31:08] Station TALL Y.

[23:01] Station is queued.

[22:01] Station is enabled.

[21:01] Station is not ready.

[20:01] Station is invalid.

Fourth Word: MSG[MSG[INX).[15:08]+3]

6-38

If NSP station information is not requested, the fourth word is reserved.

If NSP station information is requested, the fourth word contains the first word
of the NSP station table. The format of this word is as follows:

Field

[47:08]

[39:08]

[31:08]

[23:08]

Description

Station control character.

Station end of text character.

Station backspace character.

Station line delete character.

8600 0841-000

TRANSFER STATION CONTROL (Result Class = 16)

Field

[15:08]

[07:08]

Fifth Word: MSG[MSG[INX].[15:08]+4]

This word is reserved.

Sixth Word: MSG[MSG[INX].[15:0S]+5]

This word is reserved.

Seventh Word: MSG[MSG[INX].[15:0S]+6]

Field

[47:48]

Eighth Word: MSG[MSG[INX].[15:08]+7]

Field

[47:24]

[23:24]

Ninth Word: MSG[MSG[INX].[15:0S]+S]

This word is reserved.

Tenth Word: MSG[MSG[INX].[15:08]+9]

This word is reserved.

Eleventh Word

This word is reserved.

86000841-010

Description

Station WRU (who are you) character.

Station application number.

Description

Transmit or receive transmission number characters.

Description

Receive station address characters.

Transmit station address characters.

6-39

TRANSFER STATION CONTROL (Result Class = 16)

TRANSFER STATION CONTROL RESULT (Result Class = 16)

Message Format

Word Field Value Description

0 [47:08] 16 Class.

[26:01] BNA transfer bit.

0 The station is transferred to the designated MCS.

1 Word 6.[47:12] supplies the index to the Station
Transfer Index Control Word (INX = MSG[6].[47:12]).
The host name and MCS name are indexed by
MSG[lNX].[11 :12] and MSG[lNX].[23:12] respectively.

The station is transferred to the BNA station transfer
MCS, SYSTEMjSTATION/TRANSFER.

The host name must be supplied, and the MCS name is
optional. A 0 in the MCS mime index field indicates that
no MCS name was supplied.

[25:02] 0 This is the result of a Transfer Station Control
(Type = 45) DCWRITE.

1-3 This is the result of a Station Detach (Type = 42)
DCWRITE.

[23:24] The LSN of the station that has been transferred.

1 [23:24] The MCS number of the MCS that performed the
transfer.

4 [47:24] The DDT unit number, if the variant field of the original
DCWRITE type (MSG[4].[23:24]) indicates that a
pseudostation that represents one of the system DDT
units is being transferred by the COMSjODTjDRIVER.

6 [47:12] Index to the Station Transfer Index Control Word.

[32:09] The index to the information to be passed by the
Transfer Station Control (Type = 45) DCWRITE, only if
Word[O].[30:01] is set in DCWRITL

[23:24] Indexes to station interrogate information.

6-40 8600 0841-020

TRANSFER STATION CONTROL (Result Class = 16)

Explanation

The TRANSFER STATION CONTROL RESULT message is received by an MCS in
its primary queue when another MCS uses the TRANSFER STATION CONTROL
(Type = 45) DCWRITE request to give it control over a station.

The MCS that receives this message can check it to see if the transferred station is
a pseudostation and if the MCS that sent the message has requested full
participation for the station. MSG[1].[23:24] contains the MCS number of the MCS
that transferred control. Whenever desired, the MCS that receives control of the
station can return control back to the MCS that transferred the station.

This message can be used to pass session information from a controlling MCS to
another MCS acting as a subordinate application. The subordinate MCS can use the
session information passed by the controlling MCS rather than requesting it from
the user.

If the station is a pseudostation that has been retracted by means of the Station
Detach DCWRITE (that is, the field [25:02] of word 0 has a non-zero value), this
message indicates to the receiving MCS that the retraction is complete.

Refer to the A Series Communications Management System (COMS) Configuration
Guide for more information.

The following are the contents and formats of the bit fields in the expanded format
of this result.

INX := MSG[6].[47:12] (Index to the Station Transfer Index Control Word)

Word Field

MSG[INX] [23:12]

[11:12]

Description

Index to MCS name.
@[23:12].[47:16] - Length of MCS name in bytes.
@[23.12].[32:08] - First character of MCS name.

Index to host name.
@[ll:12].[47:16] - Length of host name in bytes.
@[ll:12].[32:08] - First character of host name.

INX := MSG[6].[32:09] (Header Word of Information Area)

Word Field

MSG[INX] [15:16]

8600 0841-020

Description

The number of bytes of MCS information passed from the Transfer
Station Control (Type = 45) DCWRITE.

6-41

TRANSFER STATION CONTROL (Result Class = 16)

INX := MSG[6].[32:09] + 1 (First Word of Information Area)

Word Field Value Description

MSG[lNX] [47:24] Reserved.

[23:24] The LSN of the real stat,ion that the controlling MCS
associates with the pseudostation being
transferred.

MSG[lNX+1] [47:32] To be used for the identification of the controlling
MCS.

[15:16] 1 The format version number.

MSG[lNX+2] [47:44] Reserved.

[03:01] 0 Privileged access is not allowed by the controlling
MCS (valid if word [lNX+2] field [02:01] equals 1).

1 Privileged access is allowed by the controlling MCS
(valid if word [lNX+2] field [02:01] equals 1).

[02:01] 0 No privileged information is passed.

1 The privileged access capability is passed by the
controlling MCS in word [lNX+2] field [03:01].

[01:01] 0 ' No usercode is passed.

[01:01] 1 The usercode of the controlling MCS session is
passed.

[00:01] 0 The controlling MCS session is not control capable.

[00:01] 1 The controlling MCS session is control capable.

MSG[INX+3] Reserved.

MSG[INX+4] [47:32] , Reserved.

[15:16] The relative index in MSG of usercode (valid if word
[lNX+2] field [01:01] equals 1).

INX := INX+MSG[INX+4].[IS:16] (First Word of Usercode Location)

Word

MSG[lNX]

6-42

Field

[47:08]

[39:08]

Description

The length of the usercode (in bytes).

The first byte of the usercode.

86000841-020

TRANSFER STATION CONTROL (Result Class = 16)

The remainder of the message is formatted as in the INTERROGATE STATION
ENVIRONMENT RESULT (Result Class = 15) message for which station, terminal,
line, and station name are given.

Additional information about the station that was transferred is included in the
same message. The format of the information is identical to that of the
INTERROGATE STATION ENVIRONMENT RESULT (Result Class = 15) message.
The types of information supplied are station name, station (logical) information,
terminal (physical) information, and line information.

The recipient MCS is responsible for all error recovery for the station from the time
of the transfer one of the following actions occurs:

• The MCS transfers control of the station to some other MCS.

• A haltlload sequence is initiated.

• A complete shutdown of data comm is performed.

At the time of transfer, all subsequent message traffic associated with the
transferred station appears in the primary queue of the recipient MCS. If
necessary, the CHANGE CURRENT QUEUE (Type = 32) DCWRITE function can
be invoked by the recipient MCS to establish a different current queue or to
establish a different s:et of option bits (for example, MCS wants all results and
errors sent to the current queue).

8600 0841-020 6-42A

TRANSFER STATION CONTROL (Result Class = 16)

6-428 86000841-020

ODT·TO·MCS RESULT (Result Class = 17)

ODT·TO·MCS RESULT (Result Class - 17)

Message Format

Word

o
2

6 to end

Explanation

Field

[47:08]

[39:16]

Value Description

17 Class.

Number of characters of text.

Text.

Receipt of an ODT-TO-MCS RESULT message (in the primary queue of the MCS)
is the direct result of the input of an SM (Send to MCS) system message from the
ODT. The text appears exactly as it was presented following the colon in the SM
system message. The interpretation of, and action taken on, this message class by
an MCS is solely the responsibility of the receiving MCS.

8600 0841-000 6-43

ODT-TO-STATION RESULT (Result Class = 18)

ODT·TO·STATION RESULT (Result Class - 18)

6-44

Message Format

Word

o

2

6 to end

Explanation

Field

[47:08]

[23:24]

[39:16]

Value Description

18 Class.

LSN.

Number of characters of text.

Text.

Receipt of an ODT-TO-STATION RESULT message is the direct result of the input
of an SS (Send to Station) system message from the ODT. The message text
appears exactly as .it was presented following the colon in the SS message. Action
taken on, and interpretation of, this message class is the responsibility of the.
receiving MeS. The CONTROLLER inserts this result in the current queue of the
station.

8600 0841-000

UPDATE LINE ATTRIBUTES RESULT (Result Class = 19)

UPDATE LINE ATTRIBUTES RESULT (Result Class = 19)

Message Format

Word

o
1

Field

[47:08]

[47:08]

Explanation

Value Description

19 Class.

The error value (corresponds to the DCWRITE result).

The UPDATE LINE ATTRIBUTES RESULT message is the result of the UPDATE
LINE ATTRIBUTES (Type = 131) DCWRITE. Except as specified, the format of
this message is the same as the message supplied in the UPDATE LINE
ATTRIBUTES (Type = 131) DCWRITE that caused this result message.

8600 0841-000 6-45

MESSAGE FROM CONTROLLER RESULT (Result Clas,s = 21)

MESSAGE FROM CONTROLLER RESULT (Result Class - 21)

Message Format

Word Field

0 [47:08]

[39:16]

[39:08]

6-46

Value

21

1

2

3

4

5

6

7

8

9

10

11

Description

Class.

Variant field, as follows:

Message types, as listed below:

WFL card (outgoing only); refer to the CONTROLCARO
function (WFL Card Image).

CONTROLLER command (outgoing only); refer to the
SETUPINTERCOM function (Operator Request).

Reply to CONTROLLER keyin (OOT). Refer to the
SETUPINTERCOM function (Operator Request).

Next message. Refer to the SETUPINTERCOM function
(Operator Request).

Translated MESSER messages.

Backup notice or job queue insertion notice.

EOT /EOJ notice.

BOT /BOJ notice.

The job or task is scheduled.

The job or task is awakened.

The system security options have changed. Word [1]
contains the current value of the MCP's Security
Option Word.

25 Security MESSER messages.

250 For an OOT-simulating MCS: a message from the
CONTROLLER to indicate a message that is displayed
under the command C. The format of the message
depends on the operating system.

251 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate a message that is displayed
under the command MSG. The format of the message
depends on the operating system.

252 For an OOT-simulating MCS: a message from the
CONTROLLER to indicate that the CONTROLLER has
too many dialogues waiting for an answer.

253 Reply to an operator request from an OOT-simulating
MCS. The format of the message is the same as that
of Type 3.

254 Next message from an OOT-simulating MCS. The
format of the message is the same as that of Type 4.

continued

8600 0841-000

Word

1

2

86000841-010

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

Field

[31:08]

[23:24]

[23:09]

[14:15]

Value Description

255 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate that all the lines of the
request have been sent.

1

2

0-255

N

o

Information about message types in MSG[0].[39:08).

Type 6 contains the job queue insertion notice;

Type 6 contains the job backup notice.

Type 3 contains the value inserted and defined by
MCS. Refer to the SETUPINTERCOM function.

Types 4,5, 7, 8, 9, and 10 contain the MCS number.

Types 5, 9, and 10 contain the LSN of remote
terminal.

Types 250, 251, 252, 253, 254, and 255 contain the
dialogue number.

Type 3 is used by the sending MCS.

Types 6, 7, and 8 are not used.

Types 3, 6, 7, and 8 contain the LSN of the remote
terminal.

Information about message types in MSG[O].[39:08):

Type 3 contains the text length in characters.

Type 4 contains the terminal information word.

Type 5 contains the job serial word.

Type 6 contains the job number.

Type 7 contains the usercode. If MSG[1].[47:01] = 1,
the length of the usercode is in MSG[1].[46:07], and
the usercode follows the message plus 1 word.

Types 8, 9, and 10 contain the job serial word.

Type 11 contains the current value of the MCP's
Security Option Word.

Type 252 : MSG[1].[47:16] contains the index of the
first waiting entry. MSG[l].[46:07) contains the
number of entries.

Information about message types in MSG(0).[39:08]:

Types 3 and 7 contain text through MSG[N).

Type 4 contains the contents set up by the operating
system (through MSG[N)).

Type 5: Contains the MCP message number

Type 6 contains the queue number (job queue
insertion notice.

Type 8 contains the priority of the job.

continued

6-47

I

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6-48

Word Field Value Description

Types 9 and 10 contain the usercode (through
MSG[4]). If MSG[2].[47:01] = 1, the length of the
simple form usercode is in MSG[2].[46:07].

1 Type 6 contains the printer backup (backup notice).

2 Type 6 contains the punch backup (backup notice).

3 Type 5 contains a message code that indicates the
type of MCP message.

[15:16] SUMLOG minor type, which indicates the type of
message, FATAL, RSVP, etc. For details, see the
A Series Systems Support Reference Manual.

[27:12] SUMLOG major type 3, which indicates that this is a
display message.

Type 6 contains the simple form usercode (through
MSG[5]), and MSG[3].[47:08] contains the length of
the name. This entry will appear only if this result has
been returned by Print Job File-that is, by a WFL job,
and word [0].[31:8] is equal to 2.

4 Information about the message types in
MSG[0].[39:08]:

Type 5 contains the text length in characters.

Type 8 contains the simple form usercode (through
MSG[6]); MSG[4].[47:08] contains the length of the
name.

5 Information about the message types in
MSG[0].[39:08]:

Type 5 contains the text (through MSG[N».

6

7 Information about the message types in
MSG[0].[39:08]:

Type 8 contains the simple form compiler name
(through MSG[9]); MSG[7].[47:08] contains the length
of the name.

10 Information about the message types in
MSG[0].[39:08]:

Type 8 contains the start of the standard form task
name (through MSG[N]).

Explanation

This message is received by or sent to the queue designated using the
SETUPINTERCOM function. The types of messages received are determined by
the functions performed by the MCS, such as initiating tasks that cause task
activity.

8600 0841-010

Word

1

2

8600 0841-000

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

Field

[31:08]

[23:24]

[23:09]

[14:15]

Value Description

255 For an ODT-simulating MCS: a message from the
CONTROLLER to indicate that all the lines of the
request have been sent.

1

2

0-255

N

o

Information about message types in MSG[0].[39:08].

Type 6 contains the job queue insertion notice.

Type 6 contains the job backup notice.

Type 3 contains the value inserted and defined by
MCS. Refer to the SETUPINTERCOM function.

Types 4, 5, 7, 8, 9, and 10 contain the MCS number.

Types 5, 9, and 10 contain the LSN of remote
terminal.

Types 250,251,252,253,254, and 255 contain the
dialogue number.

Type 3 is used by the sending MCS.

Types 6,7, and 8 are not used.

Types 3, 6, 7, and 8 contain the LSN of the remote
terminal.

Information about message types in MSG[0].[39:08]:

Type 3 contains the text length in characters.

Type 4 contains the terminal information word.

Type 5 contains the job serial word.

Type 6 contains the job number.

Type 7 contains the usercode. If MSG[I].[47:01] == 1,
the length of the usercode is in MSG[I].[46:07], and
the usercode follows the message plus 1 word.

Types 8, 9, and 10 contain the job serial word.

Type 11 contains the current value of the MCP's
Security Option Word.

Type 252 : MSG[I].[47:16] contains the index of the
,first waiting entry. MSG[1].[46:07] contains the
number of entries.

Information about message types in MSG[0].[39:08]:

Types 3 and 7 contain text through MSG[N].

Type 4 contains the contents set up by the operating
system (through MSG[N]).

Type 5: Ignore unless MSG[2].[47:01] == 1; then the
length of the usercode is in MSG[2].[46:07].

Type 6 contains the queue number (job queue
insertion notice.

continued

6-47

MESSAGE FROM CONTROLLER RESULT (Result Class = 21)

6-48

Word

3

4

5

6

7

10

Field

[15:16]

Explanation

Value Description

Type 8 contains the priority of the job.

Types 9 and 10 contain the usercode (through
MSG[4]). If MSG[2].[47:01] = 1, the length of the
simple form usercode is in MSG[2].[46:07].

1 Type 6 contains the printer backup (backup notice).

2 Type 6 contains the punch backup (backup notice).

Type 5 contains the message code indicating the type
of message.

Type 6 contains the simple form usercode (through
MSG[5]), and MSG[3].[47:08] contains the length of
the name. This entry will appear only if this result has
been returned by Print Job File-that is, by a WFL job.

Information about the message types in
MSG[0].[39:08]:

Type 5 contains the text length in characters.

Type 8 contains the simple form usercode (through
MSG[6]); MSG[4].[47:08] contains the length of the
name.

Information about the message types in
MSG[0].[39:08]:

Type 5 contains the text length (through MSG[N]).

Information about the message types in
MSG[0].[39:08]:

Type 8 contains the simple form compiler name
(through MSG[9]); MSG[7].[47:08] contains the length
of the name.

Information about the message types in
MSG[0].[39:08]:

Type 8 contains the start of the standard form task
name (through MSG[Nj).

This message is received by or sent to the queue designated using the
SETUPINTERCOM function. The types of messages received are determined by
the functions performed by the MCS such as initiating tasks that cause task
activity.

8600 0841-000

LINE INTERROGATE RESULT (Result Class = 24)

LINE INTERROGATE RESULT (Result Class - 24)

Message Format

Word Field Value Description

0 [47:08] 24 Class.

[23:24] LSN.

7 DLS number.

8 Line descriptor and LSP information (primary line).

[30:07] Switched status. .

[23:01] 1 LOSSOFCARRIER = DISCONNECT option.

[21:01] 1 Line is invalid.

[20:01] 0 Asynchronous line.

1 Synchronous line.

9 First control word for line.

10 First line table word.

[47:06] Line status. This field is the same as MSG[I].[39:06] in
an error result message.

[40:01] Value of L1NE(TOG[O]).

[31:08] Value of MAXSTATIONS.

[23:08] Value of L1NE(TALLY[I]).

[15:08] Value of L1NE(TALLY[O]).

11 Station descriptor for the station.

[47:08] Value of STATION(FREQUENCY).

[22:01] Value of STATION(ENABLED).

[21:01] 0 Station is READY.

[20:01] 0 Station is valid.

Explanation

The LINE INTERROGATE RESULT returns information about the line and the
station specified in the original LINE INTERROGATE (Type = 104) DCWRITE.

8600 0841-000 6-49

OBJECT JOB INPUT REQUEST RESULT (Result Class = 25)

OBJECT JOB INPUT REQUEST RESULT (Result Class = 25)

6-50

Message Format

Word

o

4

Field

[47:08]

[23:24]

[47:24]

Explanation

Value Description

25 Class.

LSN of the schedule station.

FRSN.

When an object job requests input from a schedule station (by a READ) and no
input is currently queued for the station, an OBJECT JOB INPUT result message
is constructed and sent to the current queue of the controlling MCS.

8600 0841-000

INTERCEPTED MESSAGE RESULT (Result Class = 29)

INTERCEPTED MESSAGE RESULT (Result Class - 29)

Message Format

The minimum length of this result is six words.

Word Field Value Description

0 [47:08] 29 Class.

The following description of the variant field (the
next 16 bits) applies only if the originating
OCWRITE is a WRITE (Type = 33); otherwise, the
header is identical to the -original OCWRITE
request message.

[39: 16] Carriage control fields.

[39:08] The channel number to skip to or the number of
lines to skip (NOLII SKIPCOUNT).

[31:01] 1 The tabulation to be done (NOLII TAB).

[30:01] 1 Carriage control should be done before text is
transmitted (NOLII MOTION BEFORE).

[29:01] 1 More blocks to follow this one (NOLII BLOCKED).

[28:01] 1 The value stored in MSG[0].[39:08] is the number
of vertical lines that should be skipped (NOLII
SPACE).

[27:01] 1 The value stored in MSG[0].[39:08] is the channel
number to skip to (NOLII SKIPLlNE).

[26:01] 1 A new page is required for the output device
(NOLII NEWPAGE).

[25:01] 1 Carriage return is suppressed (NOLII
NOCARRIAGERETURN).

[24:01] 1 Line feed is suppressed (NOLII NOLINEFEEO).

[23:24] LSN or OLS number.

1 [47:08] Priority of output.

2 [39:16] Text size field.

4 [47:24] The message number field or the FRSN.

[23:24] Original OCWRITE Type Field: contains
MSG[0].[47:24] from the original message.

6 to end Text (if any) from the original OCWRITE request. If
text is to be transmitted to the station, a byte
count must be given in the text size field
MSG[2].[39: 16].

8600 0841-000 6-51

INTERCEPTED MESSAGE RESULT (Result Class = 29)

6-52

Explanation

The INTERCEPTED MESSAGE RESULT is received by an MCS, in its primary
queue, when it has requested full participation for a station that it transferred to
another MCS.

The fully participating MCS receives an INTERCEPTED MESSAGE RESULT in its
primary queue every time the MCS that controls the station performs certain
DCWRITE requests on that station. The data comm subsystem intercepts each
request, converts it to the INTERCEPTED MESSAGE RESULT format, and places
the result message in the primary queue of the fully participating MCS. The fully
participating MCS can reconstruct the original DCWRITE request from the
information in the result.

An INTERCEPTED MESSAGE RESULT message informs an MCS that the
operating system has intercepted an attempt by another MCS or program to send
output to a station it controls as a pseudo-MCS. Refer to the description of station
control transfer under ""TRANSFER STATION CONTROL CDCWRITE Type = 45)"
in the "DCWRITE Information" section.

8600 0841-000

NSPINITIALIZED RESULT (Result Class = 30)

NSPINITIALIZED RESULT (Result Class - 30)

Message Format

Word

o

Field

[47:08]

[23:01]

[22:07]

Explanation

Value

30

1

Description

Class.

DLSNOTLSN.

NSP number.

The NSPINITIALIZED RESULT indicates when an NSP has completed
initialization and is ready for use. One copy of this message is issued to each MCS
that has initialized its primary queue at the time the initialization takes place.

8600 0841-000 6-53

· STATION REINITIALIZED (Result Class = 31)

STATIONREINITIALIZED (Result Class - 31)

6-54

Message Format

Word Field Value Description

0 [47:08] 31 Class.

[24:01] 1 The line was also reinitialized.

0 Only the station was reinitialized.

[23:24] lSN.

1 [23:24] DlS number.

Explanation

Receipt of a STATION REINITIALIZED result indicates that the station is deleted
from the NSP and then added again. This process causes all NSP station variables
to be reinitialized. In addition, the values of any of the station attributes or
station terminal attributes can be modified. If bit 24 of word 1 is turned on, the
NSP line variables have also been reinitialized for the line to which the station is .
attached. In addition, any of the line attributes can be altered.

This result is issued when a line or station in the configuration is modified with
the IDC. For information about IDC, refer to the Interactive Datacomm
Conjigurator (IDC) Operations Guide.

8600 0841-000

POWER OFF PENDING RESULT (Result Class = 32)

POWER OFF PENDING RESULT (Result Class - 32)

Message Format

Word Field Value Description

0 [47:08] 32 Class.

6 [47:24] Pointer to text.

[23:24] Number of characters of text.

7 Number of minutes until power off.

8 Type of message, as follows:

1 Scheduled power off.

2 Unscheduled due to thermal overload.

3 Thermal overload warning.

4 Unscheduled power off (request for immediate power
off).

5 Canceled power off.

Word MSG[MSG[6].[47:24]] to end is text.

Explanation

A POWER OFF PENDING RESULT (Result Class = 32) message (in the primary
message queue of the MCS) is a notification of a pending power-off operation,
cancellation of a pending power off, or warning of a possible power-off operation.
The text contains the information regarding the type of power-off message, such
as the time left in minutes or the type of warning. The handling of this message
class by an MCS is solely the responsibility of the receiving MCS.

8600 0841-000 6-55

ODT MODE SWITCH. NOTICE RESULT (Result Class = 80)

ODT MODE SWITCH NOTICE RESULT (Result Class = 80)

6-56

Message Format

Word Field

0 [47:08]

[39:16]

[24:01]

[23:24]

3 [47:24]

6

7

Explanation

Value

80

0

1

2

6

Description

Class.

Variant field, as follows:

The OOT has been switched to communicate with· the
CONTROLLER.

The OOT has been switched to communicate through
the COMS/OOT /ORIVER.

The OOT unit number.

The timestamp.

The OOT is a T0804.

The OOT is a T0831.

MCS number to which the transfer is desired.

An ODT MODE SWITCH NOTICE RESULT message is placed in the
INTERCOMQUEUE of the COMS/ODT /DRIVER when someone enters either
??MARC or??ODT at an ODT. This message is formatted by the operating system.
MSG[6] and MSG[7] are valid only if MSG[O].[24:01] = 1.

8600 0841-000

INPUT FROM AN ODT RESULT (Result Class = 81)

INPUT FROM AN OOT RESULT (Result Class = 81)

Message Format

Word Field Value Description

0 [47:08] 81 Class.

[23:24] OOT unit number.

2 [39:16] Number of characters of text.

3 [47:24] Timestamp.

6 to end Text (if MSG[2].[39:16] > 0).

Explanation

An INPUT FROM AN ODT RESULT message is placed in the INTERCOMQUEUE
of the COMS/ODT/DRIVER when input is entered at an ODT that has been placed
under the jurisdiction of the COMSjODT jDRIVER by an ODT switch primitive.

8600 0841-000 6-57

ERROR RESULT (Result Class = 99)

ERROR RESULT (Result Class = 99)

The ERROR RESULT message is used by the data comm subsystem to report
errors on lines and stations over which the MeS has control. The ERROR RESULT
message is recognized by the value 99 in the class field.

The class message has two formats that are described in the information that
follows.

• The line/station format

• The switched status format

Line/Station Format of ERROR RESULT Message

Message Format

Word Field Value Description

0 [4l:08] 99 Class.

[23:24] LSN.

1 [47:08] Result byte index.

[39:06] Line status prior to abort.

[33:01] NOL" LINE (TOG [1]).

[32:01] NOL" LINE (TOG [0]).

[31:08] . Last flag set in MSG[1].[23:24]. Refer to the "General
Result Message Formats."

[23:24] Error flag field. Refer to the "General Result Message
Formats."

4 [23:24] Original OCWRITE type (the original contents of
MSG[0].[47:24] prior to presentation of the message to
the NSP).

Explanation

This format is used to return error results that occur during data transmission.
The RESULT BYTE INDEX (MSG[1].[47:08]) can have the value 1, 2, 3, 6, or 7.
This format can be returned on an error on input from a terminal.

Error R~sults in Line/Station Format

6-58

Table 6-4 lists the error results returned in the line/station format of the ERROR
RESULT message.

8600 0841-000

ERROR RESULT (Result Class = 99)

Note that the general result message format also has an error flag field.

Table 6-4. Error Result, Line/Station Format

Result Field Value

MSG[0].[47:08] 99

MSG[0].[39: 16] 0

MSG[0].[39:08] 0

MSG[0].[31 :08] 0

MSG[0].[23:24] LSN

MSG[I].[47:08] Result byte index

MSG[I].[39:08] 0

MSG[I].[39:06] 0

MSG[1].[33:01] 0

MSG[1].[32:01] 0

MSG[I].[31:08] First flag set (from FIRSTERROR)

MSG[1].[23:24] Error flag field (from. NSP errors)

MSG[4].[23:24] 35 (ENABLE INPUT)

Result Byte Index.

Table 6-5 lists the values and definitions of the result byte index field
MSG[l].[47:08] in the line/station format of the ERROR RESULT message.

Table 6-5. Result Byte Index Values

Value Description

8600 0841-000

1 An error was detected; the NOLII algorithm performed a SENOHOST ERROR
statement.

2 A no-label error occurred; an error condition for which no provision was made
was encountered while executing NOLII-written code.

3 This request was not applicable to the station; the NSP was requested to
perform an operation on a station or line that makes no sense for the station or
line (for example, a disconnect request for a direct-connect line).

6 An adapter fault caused an abort; an adapter fault was encountered by an NSP.

continued

6-59

· ERROR RESULT (Result Class = 99)

Table 6-5. Result Byte Index Values (cont.)

Value Description

9 The station does not support this option. This result is applicable to the SET
TRANSMISSION NUMBER (Type = 40) and SET/RESET SEQUENCE MODE
(Type = 49) DCWRITE types.

10 The line structure was not present, which causes the request to be rejected.

11 The station structure was not present, which causes the request to be rejected.

13 The line or station was not in the proper state for the requested action, which
causes the request to be rejected.

14 A switched line error occurred.

If the result byte index value is 1, 2, or 3, the station is placed in a NOT READY
state; the MCS must perform a MAKE STATION READY/NOT READY
(Type = 37) DC WRITE to ready the station if the NSP is to resume work for that
station.

Line Status Prior to Abort (MSG[1].[39:06])

Table 6-6 lists the values of the Line Status Prior To Abort field of the ERROR
RESUL T message. This field comes from the line table word of the NSP for the
line in question and describes the NSP line status prior to the abort condition.

Field

[39:01]

[35:01]

Table 6-6. Line Status Prior to Abort Values

Value

1

1

Description

The line is NOT READY.

The line is not connected.

NDLII LINE. TOG_l and NOLII LlNE.TOG_O

6-60

The NDLII variables LINE. TOG_I and LINE. TOG_O that are controlled by the
line control procedure for the line are stored in this field. The meanings of these
two bits are determined through convention between the NDLII programmer and
the DCALGOL programmer.

8600 0841-000

ERROR RESULT (Result Class = 99)

Switched Status Format of ERROR RESULT Message

Message Format

Word Field Value Description

0 [47:08] 5 Class (for GOOD RESULT Class = 5).

7 Class (for SWITCHED STATUS RESULT Class = 7).

99 Class (for ERROR RESULT Class = 99).

[23:24] LSN.

1 [47:08] Result byte index.

00 For SWITCHED STATUS RESULT Class = 7.

13 The connection cannot be completed because of the
current status for ERROR RESULT Class = 99.

4 The message cannot be completed for ERROR RESULT
(Result Class == 99).

[39:08] The termination reason for the ERROR RESULT (Result
Class = 99) of a DIALOUT (Type = 98) DCWRITE.

TOGGLES; otherwise, one of the following:

[30:07] Switched status byte.

[30:01] SWITCHEDERROR.

[28:01] SWITCHEDBUSY.

[27:01] CONNECTED.

[26:01] AUTOANSWER.

[25:01] DIALOUT.

"[24:01] DIALIN (== 1).

4 [23:08] Original DCWRITE type.

98 For- DIALOUT.

99 For DISCONNECT.

101 For INTERROGATE SWITCHED STATUS.

102 For SET/RESET AUTOANSWER. This field contains the
value 101 if no original DCWRITE causes the result,
that is, a spontaneous result

Explanation

This format is used to return error results in response to the following:

• The DIALOUT (Type = 98) DCWRITE

8600 0841-000 6-61

ERROR RESULT (Result Class = 99)

• The DISCONNECT (Type = 99) DCWRITE

• The ANSWER THE PHONE (Type = 100) DCWRITE

The result byte index (MSG[l];[47:08]) has the value 13 or 14.

Error Results in Switched Status Format

Table 6-7 lists the error results returned in switched status format.

Note that the general result message format also contains an error flag field.

Table 6-7. Error Result, Switched Status Format

Result Field Value

MSG[O].[47:08] 99

MSG[O].[39: 16] 0

MSG[O].[39:08] 0

MSG[O].[31:08] 0

MSG[O],[23:24] LSN

MSG[I].[47:08] Result byte index

MSG[I].[39:08] Termination reason or 0

MSG[I].[30:07] Switched status

MSG[4].[23:08] Original DCWRITE type

Using Switched Status Format

6-62

Messages that have the switched status format occur in the four cases that
follow:

1. If any of the following DCWRITE types are initiated and succeed· without
failure, the system generates a SWITCHED STATUS RESULT
(Result Class =7) message with the switched status format:

• DIALOUT (Type = 98) DCWRITE

• DISCONNECT (Type = 99) DCWRITE

• INTERROGATE SWITCHED STATUS (Type = 101) DCWRITE

2. A SWITCHED STATUS RESULT (Result Class = 7) message with the
switched status format is generated by the NSP whenever an unrequested
change of (switched) status· occurs. For example, the NSP automatically
reports all unexpected disconnects and all connections made by the
auto answer capability.

8600 0841-000

ERROR RESULT (Result Class = 99)

3. An ERROR RESULT (Result Class = 99) message with the switched status
format is generated by the NSP whenever an error condition arises while the
NSP is attempting to satisfy any of the following DCWRITE types:

• DIALOUT (Type = 98) DCWRITE

• DISCONNECT (Type = 99) DCWRITE

4. The SET/RESET AUTOANSWER (DCWRITE Type = 102) DCWRITE
generates a GOOD RESULT (Result Class = .5) message of the switched
status format. The MCS can elect to receive the message or to have the
system discard it.

Switched Status Byte Values

The switched status byte contains five switched status flags as listed in Table
6-8.

Table 6-8. Switched Status Byte Values

Field Description

[28:01]

[27:01]

[26:01]

[25:01]

[24:01]

SWITCHEDBUSY: The bit is turned on whenever the NSP is in the process of
changing its connect state (disconnecting if connected, answering if not
connected, or dialing if not connected).

CONNECTED: The bit is turned on whenever the NSP is connected to a
station on a dial network.

AUTOANSWER flag: This flag is an option by which the NSP can decide
whether or not to answer incoming calls.

DIALOUT: A line is dialout (1) if its data set is connected to the telephone
switching network (and has a telephone number that can be called by, and
connected to, any of many remote stations): and (2) if its data set is
associated with an auxiliary data set (an automatic calling unit) by which the
system can dial up other remote stations.

DIALlN: .DIALIN = 1 for all lines for which the MCS might receive a message
with the switched status format. A line is DIALIN if its data set is connected to
the telephone switching network and has a telephone number that can be
called by, and connected to, one of many remote stations.

Switched Status Format Flags after DIALOUT

In the case in which the original DC WRITE is DIALOUT (Type = 98), the
switched status flags are as follows:

r

1. If the message Class = 07 (SWITCHED STATUS RESULT), the result byte
index = 00 (GOOD RESULT), SWITCHEDBUSY = 0, CONNECTED = 1, and
DIALOUT = 1. The newly connected state, as this combination reports, also
involves an automatic initiation of READY stations on the line.

8600 0841-000 6-63

ERROR RESULT (Result Class = 99)

2. If the message class = 99 (ERROR RESULT) and if the result byte
index = 13 (unable to initiate), the reason is that SWITCHEDBUSY = 1, or
CONNECTED = 1. Because the NSP and an MCS are asynchronous from one
another, a DCWRITE function that is known by the MCS to be consistent
with the line status can be found not so by the NSP. For example, an MCS
can present the DIALOUT (TYPE = 98) DCWRITE before having a chance to
remove a SWITCHED STATUS RESULT showing connected, especially if the
NSP was constructing it at the same time.

3. If the message Class = 99 and if the result byte index = 14 (unable to
complete), the reason is that the station called was busy, failed to answer in a
reasonable amount of time, and so forth. Therefore, the status flags are as for
an original DISCONNECT (Type = 99) DCWRITE with the result byte index
= 00 or 14. (Refer to "Switched Status Format Flags after DISCONNECT" in
this section.)

Switched Status Format Flags after DISCONNECT

In the case in which the original DCWRITE is DISCONNECT (Type = 99), the
switched status flags are as follows:

1. If the message class = 07 (SWITCHED STATUS RESULT), the result byte
index = 00 (GOOD RESULT), SWITCHEDBUSY = 0, and CONNECTED = O.

2. If the message class = 99 (ERROR RESULT) and if the result byte index = \

13 (unable to initiate), the reason is that CONNECTED = 0 (already
disconnected), or CONNECTED = 1 and SWITCHEDBUSY = 1 (already busy
disconnecting).

Switched Status Format Flags after INTERROGATE SWITCHED STATUS

If the original DCWRITE is INTERROGATE SWITCHED STATUS (Type = 101),
the message class of the result message is always 07 for switched status result
(no ERROR RESULT is possible), the result byte index = 00 (GOOD RESULT), and
any of the possible combinations of flags described in the previous or subsequent
cases of this section are possible.

Switched Status Format Flags SET/RESET AUTOANSWER

6-64

If the original DCWRITE is SET/RESET AUTOANSWER (Type = 102), the
message class is always 05 for GOOD RESULTS (no error result is possible), the
result byte index = 00 (GOOD RESULT), the autoanswer flag is turned on or off
appropriately, and all other switched status flags are returned as for an
INTERROGATE SWITCHED STATUS (Type = 101) DCWRITE.

8600 0841-000

ERROR RESULT (Result Class = 99)

Switched Status Format Flags after Automatic Switched Status

In the case in which no original DCWRITE exists and an automatic switched
status result is generated by the NSP because of a change of state, the switched
status flags have the following values:

• The message class = 07 (SWITCHED STATUS result)

• The result byte index = 00 (GOOD RESULT)

• The original DCWRITE type field equals 101 (for INTERROGATE SWITCHED
STATUS) although no original DCWRITE existed.

Thus, messages that arise from the automatic message generation of the NSP ,
because of a change of the state are indistinguishable from message results
arising from an INTERROGATE SWITCHED STATUS (Type = 101)
DCWRITE.

8600 0841-000 6-65

Appendix A
Sample.MCS

The following is a sample of a simple MCS. The MCS can be transferred to, or a
. station can be assigned in the DATACOMINFO file.

BEGIN
FILE LINE(KIND=DISK,MAXRECSIZE=15,BLOCKSIZE=450,NEWFILE,

PROTECTION=SAVE);
MESSAGE MSG,ERRMSG;
QUEUE PRIMQ,CURRQ; .
QUEUE ARRAY REFERENCE INTERCOMQUEUES[O];
REAL MYNUM,RSLT,LSNR,FRSN,MSGSIZE,COUNT;
ARRAY DATA,ZIPARRAY[0:30];
POINTER PTEMP;
LABEL ABORT,ENDCURRQ;
TASK ARRAY TSK[0:6];
PROCEDURE PROX(A);

ARRAY A[*]; EXTERNAL;
DEFINE

TYPEF = [47:8] #,
VARF = [39:8] #,

. VARIANTF= [39:16] #,
LFSNF = [22:23] #,

LENGTHF = [23:24] #;
ALLOCATE(MSG,8);
MSG[O]:=O;
IF (RSLT:=DCWRITE(MSG,PRIMQ» > 63 THEN

GO TO ABORT;
MYNUM:=MSG[I];
SETUPINTERCOM(INTERCOMQUEUES,PRIMQ);

ON ANYFAULT,
GO TO ABORT;

WHILE TRUE DO
CASE WAIT(PRIMQ.QINSERTEVENT,CURRQ.QINSERTEVENT)-1 OF

BEGIN
(0) :

8600 0841-000

BEGIN % INPUT IN PRIMARY QUEUE
MSGSIZE:=REMOVE(MSG,PRIMQ);
LSNR:=MSG[O].LFSNF;
IF (MSG[O].TYPEF = 1 AND

MSG[O].VARIANTF = 3)
OR MSG[O].TYPEF = 16

THEN
BEGIN

% STATION EVENT
% NEW STATION ACTIVITY
% STATION TRANSFER

A-I

Sample MeS

A-2

ALLOCATE(MSG,18);

ELSE

MSG[O]:=LSNR & 32 TYPEF; % CHANGE CURRENT QUEUE AND
MSG[2].VARIANTF:=26; % GIVE GREETING
REPLACE POINTER(MSG[6],8)

BY IIWELCOME TO B6000 1l
,

II DATA COMM";
IF (RSLT:=DCWRITE(MSG,CURRQ)) > 63 THEN

GO TO ABORT;
END

IF MSG[O].TYPEF = 1
AND MSG[O].VARIANTF = 0 AND MSG[1].[12:1] = 1

THEN % STATION EVENT AND ? COMMAND

ELSE

BEGIN
ALLOCATE(ERRMSG,6+((MSG[2].VARIANTF+5) DIV 6));
% GIVE TO CONTROLLER
ERRMSG[O]:=O & 21 TYPEF & 2 VARF

& 1 [46:1] & MYNUM [31:8] & LSNR LENGTHF;
ERRMSG[5]:=MSG[2].VARIANTF-1;
REPLACE POINTER(ERRMSG[6]) BY POINTER(MSG[6])+1

FOR MSG[2].VARIANTF-1;
INSERT(ERRMSG,INTERCOMQUEUES[O]);
MSG[O]:=MSG[O].LFSNF & 33 TYPEF;
% REFLECT THE COMMAND
IF (RSLT:=DCWRITE(MSG)) > 63 THEN

GO TO ABORT;
END

IF MSG[O].TYPEF = 21 AND MSG[O].VARF = 3 THEN

ELSE

BEGIN % CONTROLLER RESPONSE
ALLOCATE(ERRMSG,6+((MSG[1]+5) DIV 6));
ERRMSG[O]:=O & 33 TYPEF

& REAL(MSG[O].[14:15]) LENGTHF;
ERRMSG[2].VARIANTF:=MSG[1];
REPLACE POINTER(ERRMSG[6])

BY POINTER(MSG[2]) FOR MSG[l];
.IF (RSLT:=DCWRITE(ERRMSG,CURRQ)) > 63 THEN

GO TO ABORT;
END

IF MSG[O].TYPEF = 99 THEN
BEGIN % ERROR MESSAGE
ALLOCATE(ERRMSG,6);
ERRMSG[O]:=LSNR & 37 TYPEF & 1 VARIANTF;
IF (RSLT:=DCWRITE(ERRMSG)) > 0 THEN

GO TO ABORT;
IF MSG[l].TYPEF GEQ 4 AND MSG[l].TYPEF LEQ 6 THEN

BEGINc
ALLOCATE(ERRMSG,8);
ERRMSG[O]:=LSNR & 96 TYPEF;
IF (RSLT:=DCWRITE(ERRMSG)) > 63 THEN

8600 0841-000

(l) :

8600 0841-000

END
ELSE

GO TO ABORT;
END;

IF MSG[O].TYPEF = 2 THEN

ELSE

BEGIN % FILE OPEN
LSNR:=MSG[O].LFSNF;
FRSN:=MSG[6].LFSNF;
ALLOCATE(MSG,6);
MSG[O]:=FRSN & 64 TYPEF;
IF (RSLT:=DCWRITE(MSG)) > 63 THEN

GO TO ABORT;
ALLOCATE(MSG,12);
MSG[O]:=LSNR & 33 TYPEF;
REPLACE POINTER(MSG[6],8) BY

II STATION ATTACHED TO FI LEII FOR 24;
MSG[2] .VARIANTF:=24;
IF (RSLT:=DCWRITE(MSG)) > 63 THEN

GO TO ABORT;
END

IF MSG[O].TYPEF = 4 THEN
BEGIN % FILE CLOSE

, ALLOCATE(MSG,12);
MSG[O]:=LSNR & 33 TYPEF;
REPLACE POINTER(MSG[6],8)

BY II FI LE CLOSED II FOR 11;
MSG[2].VARIANTF:=11;
IF (RSLT:=DCWRITE(MSG)) > 63 THEN

GO TO ABORT;
END

ELSE
BEGIN
REPLACE POINTER(DATA) BY POINTER(MSG) FOR 48;
WRITE(LINE,<6(H12,Xl»,DATA[*]);
END;

END OF PRIMQ CASE;

BEGIN % INPUT INTO CURRENT QUEUE
MSGSIZE:=REMOVE(MSG,CURRQ);
REPLACE PTEMP:POINTER(DATA,8) BY POINTER(MSG[6],8)

FOR (COUNT:=MSG[2].VARIANTF);
SCAN PTEMP:PTEMP FOR COUNT:COUNT UNTIL NEQ II II;
IF PTEMP = IIQUIT II THEN

GO TO ABORT;
IF PTEMP = "ZIp ll FOR 3 THEN

BEGIN
PTEMP:=PTEMP+3;
REPLACE POINTER(ZIPARRAY) BY 4116fU FOR 1,

PTEMP FOR COUNT-3,1I; END.II FOR 6;
ZIP WITH ZIPARRAY[*];

Sample MCS

A-3

Sample MCS

A-4

END
ELSE
IF PTEMP = "ACCOUNT" THEN

BEGIN
REPLACE TSK[O].NAME

BY "OBJECT/ACCOUNT/STATUS/REPORT ON LEDGER.";
REPLACE TSK[O].FILECARDS

BY "FILE LINE(KIND=REMOTE);";
TSK[O].SOURCESTATION:=LSNR;
TSK[O].STATION:=LSNR;
REPLACE POINTER(ZIPARRAY) BY PTEMP+4 FOR COUNT-4;
PROCESS PROX(ZIPARRAY) [TSK[O]];

ENDCURRQ:

END;
MSG[O]:=MSG[O].LFSNF & 33 TYPEF;
IF (RSLT:=DCWRITE(MSG)) > 63 THEN

GO TO ABORT;

END OF CURRENT QUEUE CASE;
END OF CASE STMT;

ABORT:
WRITE(LINE,<"MCS ABORTED ON DCWRITE ERROR NO.",R10.0>,RSLT);
ALLOCATE (MSG,7) ;
MSG[O]:=LSNR & 45 TYPEF & 1 [25:1];
RSLT:=DCWRITE(MSG);
END.

8600 0841-000

Appendix B
Reserved Words

Three types of reserved words are defined:

Type

Type 1

Type 2

Description

Reserved words are words that cannot be used as
identifiers anywhere in the source program.

Reserved words are words that can be declared to be
identifiers (overriding their reserved meaning) but, if
undeclared, have a Well-defined meaning.

Type 3 Reserved words are words that can be declared to be
identifiers but, where used in the language as specified by
the syntax, have the reserved meaning.

Type 1
DCALGOL Type 1 reserved words consist of the ALGOL Type 1 reserved words
plus the following:

• DISKHEADER

• EPILOG

• EXCEPTION

• MESSAGE

• QUEUE

Type 2
DCALGOL Type 2 reserved words consist of the ALGOL Type 2 reserved words
plus the following:

• ALLOCATE

• ATTACHSPOQ

• CHECKGUARDFILE

• CLEAR

• COMBINE

• CONTROLCARD

• COpy

8600 0841-000 8-1

Reserved Words

• DCERRANALYSIS

• DCERRORLOGGER

• DCKEYIN

• DCSYSTEMTABLES

• DCWRITE

• FLUSH

• GETSTATUS

• INSERT

• MAKE USER

• MCSLOGGER

• MLSCAPABLE

• NULL

• QUEUEINFO

• REMOVE

• RESIDENT

• SETSTATUS

• SETUPINTERCOM

• SNR .. SYSTEMST ATUS

• USERDATA

• USERDA T AFREEZER

• USERDATALOCATOR

• USERDAT AREBUILD

• WRITESPO

Type 3

8-2

DCALGOL Type 3 reserved words consist of the ALGOL Type 3 reserved words
plus the following:

• EOFBITS

• EOFSEGMENT

• EUNUMBER

• LAST ACCESSDA TE

• MODE

• QACTIVE

8600 0841-000

Reserved Words

• QBLOCKSIZE

• QDISKERROR

• QHEADSIZE

• QINSERTEVENT

• QMEMORYLIMIT

• QMEMORYSIZE

• QMESSAGECOUNT

• QREMOVEW AIT

• QROWSIZE

• QSIZE

• QTANK

• QUSERCOUNT

• ROWCLASS

• ROWS

• ROWSIZE

8600 0841-000 8-3

Appendix C
Understanding Railroad Diagrams

What Are Railroad Diagrams?
Railroad diagrams are diagrams that show you the rules for putting words and
symbols together into commands and statements that the computer can
understand. These diagrams consist of a series of paths that show the allowable
structure, constants, and variables for a command or a statement. Paths show the
order in which the command or statement is constructed. Paths are represented
by horizontal and vertical lines. Many railroad diagrams have a 'number of
different paths you can take to get to the end of the diagram. For example:

- REMOVE t J
SOURCE

OBJECT

If you follow this railroad diagram from left to right, you will discover three
acceptable commands. These commands are

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here.
However, because the allowed ways of communicating with the computer can be
complex, railroad diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual
representations of commands and statements. Railroad diagrams are intended to

• Show the mandatory items.

• Show the user-selected items.

• Present the order in which the items must appear.

• Show the number of times an item can be repeated.

• Show the necessary punctuation.

To familiarize you with railroad diagrams, this explanation describes the
elements of the diagrams and provides examples.

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules.

8600 0841-000 C-1

Understanding Railroad Diagrams

They all consist of paths that represent the allowable structure, constants, and
variables for commands and statements.

By following railroad diagrams, ·You can easily understand the correct syntax for
commands and statements. Once you become proficient in the use of railroad
notation, the diagrams serve as quick references to the commands and
statements.

Constants and Variables
A constant is an item that cannot be altered. You must enter the constant as it
appears in the diagram, either in full or as an allowable abbreviation. If a
constant is partially underlined, you can abbreviate the constant by entering only
the underlined letters. In addition to the underlined letters, any of the remaining
letters can be entered. If no part of the constant is underlined, the constant
cannot be abbreviated. Constants can be recognized by the fact that they are
never enclosed in angle brackets « » and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data
that meets the requirements of the particular command or statement. When
replacing a variable with data, you must follow the rules defined for the
particular command or statement. Variables appear in railroad diagrams enclosed
in angle brackets « ».

In the following example, BEGIN and END are constants, and <statement list> is
a variable. The constant BEGIN can be abbreviated since it is partially
underlined. Valid abbreviations for BEGIN are BE, BEG, and BEG!.

- BEGIN -<statement 1; st>- END :............--------------------1

Constraints

C-2

Constraints are used in a railroad diagram to control progression through the
diagram. Constraints consist of symbols and unique railroad diagram line paths.
They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

8600 0841-000

Understanding Railroad Diagrams

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates
that the command or statement can be followed by another command or
statement.

- SECONDWORD - (-<arithmetic expression>-) ---------------i

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates that
the command or statement must be on a line by itself;

- STOP ------------------------------%

Right Arrow

The right arrow symbol (» is used when the railroad diagram is too long to fit
on one line and must continue on the next. A right arrow appears at the end of
the first line, and another right arrow appears at the beginning of the next line.

- SCALERIGHT - (-<arithmetic expression>- , -------------~~.

)-<arithmetic expression>-)

Required Items

A required item can be either a constant, a variable; or punctuation. A required
item appears as a single entry, by itself or with other items, on a horizontal line.
Required items can also exist on horizontal lines within alternate paths or nested
(lower-level) diagrams. If the path you are following contains a required item,
you must enter the item in the command or statement; the required item cannot
be omitted.

In the following example, the word EVENT is a required constant and
<identifier> is a required variable:

- EVENT -<identifier>-------------------------f

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose
anyone of the items from the list. If the list also contains an empty path (solid
line), none of the choices are required. A user-selected item can be either a
constant, a variable, or punctuation. In the following railroad diagram, the plus

8600 0841-000 C-3

Understanding Railroad Diagrams

Loop

Bridge

C-4

o sign (+) or minus sign (-) can be entered before the required variable
<arithmetic expression>, or the symbols can be disregarded because the diagram
also contains an empty path.

A loop represents an item or a group of items that you can repeat. A loop can
span all or part of a railroad diagram. It always consists of at least two
horizontal lines, one below the other, connected on both sides by vertical lines.
The top line is a right-to-Ieft path that contains information about repeating the
loop.

Some loops include a return character. A return character is a character-often a
comma (,) or semicolon (;)-required before each repetition of a loop. If there is
no return character, the items must be separated by one or more blank spaces.

~<f;eld V:l~-~---~

Sometimes a loop also includes a bridge, which is used to show the maximum
number of times the loop can be repeated. The bridge can precede the contents of
the loop, or it can precede the return character (if any) on the upper line of the
loop.· .

The bridge determines the number of times you can cross that point in the
diagram. The bridge is an integer enclosed in curved lines (.I ~). Not all loops
have bridges. Those that do not can be repeated any number of times until all
valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than
two times. In the second bridge example, you can enter LINKAGE or RUNTIME
no more than three times.

8600 0841-000

Understanding Railroad Diagrams

>

{

2\

LINKAGE]

RUNTIME

In some bridges, an asterisk (*) follows the number. The asterisk means that you
must cross that point in the diagram at least once. The maximum number of times
that you can cross that point is indicated by the number in the bridge.

~~~~~I ______ -------------~ 
~~UNTIMEJ 
In the previous bridge example, you must enter LINKAGE at least once but no 
more than twice, and you can enter RUNTIME any number of times. 

The following table illustrates the constraints used in railroad diagrams. 

Symbol Explanation 

I Vertical bar. Indicates that the command or statement can be followed by another 
command or statement. 

% Percent sign. Indicates that the command or statement must be on a line by itself. 

> Right arrow. Indicates that the diagram occupies more than one line. 

-<requ;red>- Required item. Indicates the constants, variables, and punctuation that must be 
entered in a command or statement. 

User-selected items. You select the item or items to include. 

H NO 

~ I 
Loop. Indicates that an item or group of items can be repeated. 

L:L Bridge. Indicates the maximum number of times a loop can be repeated. 

Following the Paths of a Railroad Diagram 
The paths of a railroad diagram lead you through the command or statement 
from beginning to end. Some railroad diagrams have only one path, while others 
have several alternate paths. The following railroad diagram indicates there is 
only one path that requires the constant LINKAGE and the variable <linkage 
mnemonic>: 

I 

8600 0841-000 C-5 



Understanding Railroad Diagrams 

- LINKAGE -<linkage mnemonic>--------------------I 

Alternate paths provide choices in the construction of commands and statements. 
Alternate paths are provided by loops, user-selected items, or a combination of 
both. More complex railroad diagrams can consist of many alternate paths, or 
nested (lower-level) diagrams, that show a further level of detail. 

For example, the following railroad diagram consists of a top path and two 
alternate paths. The top path includes an ampersand (&) and the constants that 
are user-selected items in the vertical list. These constants are within a loop that 
can be repeated any number of times until all options have been selected. The 
first alternate path requires the ampersand followed by the required constant 
ADDRESS. The second alternate path requires the ampersand followed by the· 
required constant ALTER and the required variable <new value>. 

- & -,-..........,-

ASCII 

BCl 

DECIMAL 

EBCDIC 

HEX 

OCTAL 

ADDRESS -----; 

ALTER -<new value> 

Railroad Diagram Examples with Sample Input 

C-6 

The following examples show five railroad diagrams and possible command and 
statement constructions based on the paths of these diagrams. 

Example 1 

- LOCK - ( -<file identifier>- ) ------------------1 

Sample Input 

LOCK (Fl) 

LOCK (FI LE4 ) 

LOCK is a constant and cannot be altered. Because no part of the word is 
underlined, the entire word must be entered. The parentheses are required 
punctuation, and Fl and FILE4 are sample file identifiers. 

8600 0841-000 



Example 2 

<open statement> 

-- OPEN g<database name> 

INQUIRY 

UPDATE 

Sample Input 

OPEN DATABASE! 

Understanding Railroad Diagrams 

The constant OPEN is followed by the variable DATABASE!, which is a database 
name. The railroad diagram shows two user-selected items, INQUIRY and 
UPDATE. However, because there is an empty path (solid line), these entries are 
not required. 

OPEN INQUIRY DATABASE! 

The constant OPEN is followed by the user-selected constant INQUIRY and the 
variable DATABASE!. 

OPEN UPDATE DATABASE! 

The constant OPEN is followed by the user-selected constant UPDATE and the 
variable DATABASE!. 

Example 3 

<generate statement> 

-- GENERATE --<subset>-- = 1 NULL 

<subset>-.--------f 

AN~D <subset> 
OR 

+ 

Sample Input 

GENERATE Z = NULL 

The GENERATE constant'is followed by the variable Z, an equal sign (=), and the 
user-selected constant NULL. 

8600 0841-000 C-7 



Understanding Railroad Diagrams 

C-8 

GENERATE Z = x 

The GENERATE constant is followed by the variable Z, an equal sign, and the 
user-selected variable X. 

GENERATE Z = X AND B 

The GENERATE constant is followed by the variable Z, an equal sign, the 
user-selected variable X, the AND command (from the list of user-selected items 
in the nested path), and a third variable, B. 

GENERATE Z = X + B 

The GENERATE constant is followed by the variable Z, an equal sign, the 
user-selected variable X, the plus sign (from the list of user-selected items in the 
nested path), and a third variable, B. 

Example 4 

<entity reference declaration> 

- ENTITY REFERENCE l<entHY ref ID>- ( ~Class ID>- ) --1,....---------1 

Sample Input 

ENTITY REFERENCE ADVISORl (INSTRUCTOR) 

The required item ENTITY REFERENCE is followed by the variable ADVISORl 
and the variable INSTRUCTOR. The parentheses are required. 

ENTITY REFERENCE ADVISORl (INSTRUCTOR), ADVISOR2 (ASST_INSTRUCTOR) 

This sample illustrates the use of a loop by showing the input that appears in the 
first sample followed by a comma, the variable ADVISOR2, and the. variable 
ASST-INSTRUCTOR. The parentheses are required. 

8600 0841-000 



Understanding Railroad Diagrams 

Example 5 

- PS- MODIFY -----------------------~. 

~-r-----L.-.- <request number>-...,..--------....L.-r---__ r-------...... 

<request number>- - - <request number> 

ALL·~-----------------~ 

EXCEPTIONS -------------' 

L......L..-----....--,<fi 1 e attri bute phrase> 

~-..--<print modifier phrase> 

Sample Input 

PS MODI FY 11159 

The constants PS and MODIFY are followed by the variable 11159, which is a 
request number. 

PS MODIFY 11159,11160,11163 

This sample illustrates the use of a loop by showing the input that appears in the 
first sample followed by a comma, the variable 11160, another comma, and the 
final variable 11163. 

PS MODI FY 11159-11161 DESTINATION = "LP7" 

The constants PS and MODIFY are followed by the user-selected variables 
11159-11161, which are request numbers, and the user-selected variable 
DESTINATION = "LP7 ", which is a file attribute phrase. 

PS MOD ALL EXCEPTIONS 

The constants PS and MODIFY are followed by the user-selected constant ALL 
and the user-selected constant EXCEPTIONS. Note that in this sample input, the 
constant MODIFY has been abbreviated. 

8600 0841-000 C-9 





Glossary 

A 
ACK 

See acknowledgment. 

acknowledgment (ACK) 

active 

ACU 

In data communications, a message sent to acknowledge the successful receipt of 
a message. 

Pertaining to the state of a process that is executing normally, and is neither 
scheduled nor suspended. 

See automatic calling unit. 

adapter co.-trol 

ALGOL 

In a Network Definition Language II (NDLII) program, the part of the protocol 
module that defines an input process and an output process to implement the 
real-time, low-level aspects of a line protocol through control of a line adapter. 

Algorithmic language. A structured, high-level programming language that 
provides the basis for the stack architecture of the Unisys A Series systems. 
ALGOL was the first block-structured language developed in the 1960s and 
served as a basis for such languages as Pascal and Ada. It is still used extensively 
on A Series systems, primarily for systems programming. 

algorithm 
(1) A sequence of instructions describing the steps needed to complete a 
particular task 
(2) In Network Definition Language II (NDLII), the part of a program that 
contains the adapter control and line control processes for one type of line and 
specifies the line protocol for that type of line. 

arithmetic expression 
An expression containing any of the following: a numeric variable, a numeric 
elementary item, a numeric literal, identifiers and literals separated by arithmetic 
operators, two arithmetic expressions separated by an arithmetic operator, or an 
arithmetic expression enclosed in parentheses. 

8600 0841-000 Glossary-1 



Glossary 

arithmetic operator 

array 

(1) (DOC) An operator that specifies an operation with numeric inputs and 
outputs; for example, ADD, SUBTRACT, or DIVIDE. 
(2) A single character or a fixed 2-character combination belonging to the 
following set: + (addi~ion), - (subtraction), * (multiplication), / (division), or 
** (exponentiation). ) 

An ordered collection of a fixed number of common elements under one name, 
each element having the same data type. Access for each element is through an 
index to the common name. 

ascending order 

async 

An arrangement of items in which the order progresses consecutively from the 
lowest-valued item to the highest-valued item. Contrast with descending order. 

See asynchronous transmission. 

asynchronous transmission 

attribute 

autodial 

A transmission mode in which the time of the occurrence of each character or 
block of characters is arbitrary. The characters, or blocks of characters, are 
surrounded by start and stop bits, from which a receiver derives the necessary 
timing for sampling bits. This mode is used for low- to medium-speed 
transmission of character strings. Synonym jor start/stop transmission. 

(1) A characteristic or property. 
(2) The information that describes a characteristic of an entity. 
(3) In the Semantic Information Manager (81M), a characteristic of entities of a 
class or of the class itself. A SIM attribute can be either data-valued or 
entity-valued. 

The capability of a terminal, modem, computer, or similar device to place a call 
over the switched telephone network, and to establish a connection, without 
operator intervention. 

automatic calling unit (ACU) 

B 

DCC 

DCS 

A device that permits a modem or data terminal to place calls automatically and 
thereby establish a dialed link over the communication network. This device is 
used with data circuit terminating equipment (DCE) to connect line adapters to 
data communications lines. 

See block check character. 

See block check sequence. 

Glossary-2 8600 0841-000 



. binary 

bit 

bit rate 

Glossary 

A characteristic or condition for which there are two alternatives. A binary 
number system uses a base of 2 and the digits 0 and 1. 

The most basic unit of computer information. The word bit is a contraction of 
binary digit. A bit can have one of two values: binary 0 (sometimes referred to as 
OFF) and binary 1 (sometimes referred to as ON). 

The speed at which bits are transmitted over a communication channel. 

bit-oriented line 
A line that uses a bit-oriented protocol. 

bit-oriented protocol 

block 

In data communications, a communication protocol or transmission procedure in 
which control information is encoded in a field of one or more bits. Bit-oriented 
protocols are oriented toward full-duplex link operation. 

(1) A group of physically adjacent records that can be transferred to or from a 
physical device as a group. 
(2) A program, or a part of a program, that is treated by the processor as a 
discrete unit. Examples are a procedure in ALGOL, a procedure or function in 
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program. 

block check character (BCC) 
In data communications, a character appended to a data block that is used in 

. block checking. Block checking is an error-checking procedure applied to a block 
for control and recovery purposes. This procedure conforms to a predetermined 
set of rules agreed to at both ends of a communications channel. 

block check sequence (BCS) 

BNA 

Boolean 

byte 

The sequence of data resulting from the execution of a specific algorithm on 
transmitted data. This sequence is used to verify the validity of the transmitted 
data. 

The network architecture used on A Series, B 1000, and V Series systems as well 
as CP9500 and CP 2000 communications processors to connect multiple, 
independent, compatible computer systems into a network for distributed 
processing and resource sharing. 

Pertaining to variables, data items, and attributes having a value of TRUE or 
FALSE. 

(1) (ANDIPS) A binary character string operated upon as a unit and usually 
shorter than a computer word. 

8600 0841-000 Glossary-3 



Glossary 

c 
call 

(2) On Unisys A Series systems, a measurable group of 8 consecutive bits having 
a single usage. In data communications, a byte is often referred to as a character 
or an octet. 

(1) To transmit addressing signals to establish a connection between stations. 
(2) In data communications, a sequence of events that begins when a user 
initiates a call request signal at an exchange that results in a connection. A call 
concludes when the connection is released. Also, a call is an attempt to reach 
another network user, whether or not the connection is successful. 
(3) A programmatic request for another procedure or program to execute. 
(4) In the Screen Design Facility Plus (SDF Plus), a type of link-to-form 
processible item that moves the user from one form to another without disrupting 
processing of the original form. When the user completes the called form, 
processing continues on the original form. 

called program 
A program that is the object of a CALL statement and is combined at object time 
with the calling program to produce a run unit. . 

calling program 
A program that executes a CALL statement to another program. 

CANDE 
See Command and Edit. 

CCR 
See compiler control record. 

character 
(1) The actual or coded representation of a digit, letter, or special symbol in 
display form. 
(2) In data communications, 8 contiguous bits (1 byte). 
(3) See also octet. 

character array 
In ALGOL, an array whose elements are ASCII, EBCDIC, or hexadecimal 
characters. Contrast with word array. 

character-oriented 
Pertaining to a communications protocol or transmission procedure where control 
information is encoded in a field of one or more bytes (characters). 

character-oriented line 
A line that uses a character-oriented protocol. 

Glossary-4 8600 0841-000 



Glossary 

checkerboarding 
A situation in which only small areas are available between the in-use areas of 
storage. Many areas can be available, but the system might not be able to use 
them because none of the areas is large enough. 

Command and Edit (CANDE) 
A time-sharing message control system (MCS) that enables a user to create and 
edit files, and to develop, test, and execute programs, interactively. 

Communications Management System (COMS) 

compile 

A general message control system (MCS) that controls online environments on 
A Series systems. COMS can support the processing of multi program transactions, 
single-station remote files, andmultistation remote files. See also COMS (Entry), 
COMS (Full-Featured), and COMS (Kernel). 

To convert a program written in a source language, such as COBOL or ALGOL, to 
machine code that can be executed by a computer. 

compile time 

compiler 

The time during which a compiler analyzes program text and generates an object 
code file. 

A computer program that translates instructions written in a source language, 
such as COBOL or ALGOL, into machine-executable object code. 

compiler control option 
An individual compiler directive that appears in a compiler control record (CCR). 
Compiler control options were previously referred to as compiler dollar options or 
dollar options. 

compiler control record (CCR) 

COMS 

A record in a source program that begins with a dollar sign ($) and contains one 
or more options that control various compiler functions. These specifications can 
appear anywhere in the source program unless otherwise specified. The term 
compiler control image (CC1) is a nonpreferred synonym. 

See Communications Management System. 

COMS (Entry) 
A version of the Communications Management System (COMS) message control 
system (MCS) that includes the COMS (Kernel) version and the COMS utility. 

COMS (Full-Featured) 
A version of the Communications Management System (COMS) message control 
system (MCS) that provides all the features of the COMS (Entry) version and 
enables the user to develop applications using the transaction code (trancode) 
routing feature, the trancode security feature, and the synchronized recovery 
feature for Data Management II (DMSII) databases. This version also provides 
statistics to allow users to monitor the performance of the transactions. 

8600 0841-000 Glossary-5 



Glossary 

COMS (Kernel) 

console 

The basic version of the Communications Management System (COMS) message· 
control system (MCS). COMS creates a predefined configuration file that enables 
the user to use the window feature with the following three windows: a 
Menu-Assisted Resource Control (MARC) window with eight dialogues, a 
Command and Edit (CANDE) window with two dialogues, and a Generalized 
Message Control System (GEMCOS) window with one dialogue. Additionally, the 
user can communicate with remote-file programs. 

In the Remote Job Entry/Binary Synchronous Communication (RJE/BSC) system, 
a term that is synonymous with the operator display terminal (ODT). 

construct 
An element in the structure of a programming language. 

CONTROLLER 

CRC 

An invisible, independent runner program that is responsible for processing 
system commands, routing system messages, and scheduling jobs. 

See cyclic redundancy check. 

. cyclic redundancy check (eRC) 

D 

(1) (VDP) A redundancy check in which the check key is generated by a cyclic 
algorithm. 
(2) A system of error checking performed at both the sending and receiving 
stations after a block check character has been accumulated.· 

data carrier detect (DCD) 
An RS-232 modem signal that indicates to an attached terminal that the local 
modem is receiving a signal from a remote modem. 

data circuit terminating equipment (neE) 
In X.25, the functional unit of a data station that establishes, maintains, and 
releases a connection and provides the functions necessary for any code or signal 
conversion between the data terminal equipment (DTE) and the data transmission 
line. A DCE can be a separate piece of equipment. A DCE is the network 
supplier's equipment that can serve several user installations and is the user's 
entry point to the network. 

data comm 
See data communications. 

Glossary-6 8600 0841-000 



Glossary 

data communications (data comm) 
The transfer of data between a data source and a data sink (two computers, or a 
computer and a terminal) by way of one or more data links, according to 
appropriate protocols. 

Data Communications ALGOL (DCALGOL) . 
A Unisys language based on ALGOL that contains extensions for writing message 
control system (MCS) programs and other specialized system programs. 

data communications controller (DCC) 
The subset of the Master Control Program (MCP) operating as a group of 
independent tasks, .each associated with one network support processor (NSP) or 
data communications data link processor (DCDLP). 

data communications data link processor (DCDLP) 
A data communications processor (DCP) that combines the functions of a network 
support processor (NSP) and a line support processor (LSP) into one physical 
data link processor (DLP) and supports up to four lines of communication. 

data coinmunications host adapter (DCHA) 
A data communications processor on Micro A systems that combines the functions 
of a network support processor (NSP) and a line support processor (LSP) into one 
physical board and supports up to four lines of communication. 

data communications processor (DCP) 
A hardware component that was replaced by the network support processor 
(NSP). 

data link escape (DLE) character 
(ANDIPS) A transmission control character that changes the meaning of a limited 
number of contiguous characters or coded representations. DLE is used 
exclusively to provide supplementary transmission control characters. 

Data Management System (DMS) 
The system responsible for storing and retrieving data while protecting data 
security and integrity. 

data set ready (DSR) 
An RS-232 modem interface control signal that indicates that the modem is ready 
for transmission. 

DATACOMINFO file 

DCA 

A file that contains a complete description of the data communications 
configuration, including algorithms, editors, and translation tables. This is the file 
that the Interactive Datacomm Configurator (IDC) modifies and from which the 
Master Control Program (MCP) initializes the data communications subsystem. 

See distributed control agent. 

DCALGOL 
See Data Communications ALGOL. 

8600 0841-000 Glossary-7 



Glossary 

DCC 
See data communications controller. 

DCD 
See data carrier detect. 

DCDLP 
See data communications data link processor. 

DCE 
See data circuit terminating equipment. 

DCHA 
See data communications host adapter. 

DCP 
See data communications processor. 

DCWRITE 
A system intrinsic that passes a specified message to the data communications 
controller (DCC). 

declaration 
(l) A programming language construct used to identify an object, such as a type 
or variable, to the compiler. A declaration can be used to associate a data type 
with the object so that the object can be used in a program. 
(2) In the Data Management System II (DMSII) Inquiry program, a general term 
used to refer to the texts of DEFINE, GENERATE, and VIRTUAL commands as a 
group. 

dedicated line 
. A dedicated circuit, nonswitched channel, or private line. See leased line. 

descending order 

dialogue 

An arrangement of items in which the order progresses consecutively from the 
highest-valued item to the lowest-valued item. Contrast with ascending order. 

(1) In interprocess communication, a single instance of a two-way communication 
between two processes. A port subfile supports one dialogue. (2) See window 
dialogue. 

digit present (DPR) 
In data communications, a signal from a line support processor (LSP) adapter to 
an automatic calling unit (ACU) indicating that the next number in the dialing 
sequence has been loaded. 

discontinue 

Glossary-8 

(1) To terminate a referenced task. . 
(2) To cause a process to terminate abnormally. A process can be discontinued by 
operator commands, by statements in related processes, or by the system 
software. 

8600 0841-000 



disk 

disk file 

Glossary 

A random-access data storage device consisting of one or more circular platters 
that contain information recorded in concentric circular paths called tracks. Data 
on a disk are accessed by movable read/write heads. Some disks are removable. 
Synonym jor disk pack, pack. 

A file stored on a disk or disk pack. 

disk file header 
A data structure that contains information about a disk file, such as the physical 
location of the file on the disk and various file attributes. A disk file header is 
also referred to as a header. 

disk header 
See disk file header. 

display form 

DLE 

DLS 

A file title that contains one or more identifiers separated by slashes and thai can 
include either a usercode in parentheses, an asterisk, or an ON clause. The 
following is an example of a display form file title: (SMITH)REPORT / JULY ON 
ACCOUNTS. 

See data link escape character. 

See DLS number. 

DLS number 

DMS 

DPR 

DSR 

E 

EBCDIC 

A construct made up of three numbers, each separated by a colon (:). The first 
number is the relative network support processor (NSP) number, which was 
previously the data communications processor CDCP) number. The second number 
is the line number. The third number is the relative station number within the 
line. 

See Data Management System. 

See digit present. 

See data set ready. 

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256 
graphic and control characters that are the native character set of most 
mainframe systems. 

8600 0841-000 Glossary-9 



Glossary 

EBCDIC array 
In ALGOL, an array whose elements are EBCDIC characters .. 

EI 
See electrical interface. 

electrical interface (EI) 
A set of signal characteristics such as timing, duration, voltage, and current. 

end of file (EOF) 
A code at the end of a data file that signals that the last record in the file has 
been processed. 

end of job (EOJ) 
(1) The termination of processing of a job. 
(2) In the Communications Management System (COMS) and X.25, the control 
code that signals the receiver that a job has completed. 

end of task (EOT) 
The termination of processing of a task. 

end of transmission (EOT) 
A control code that tells the receiver that all user data (text) has been sent. 

end-of-number character (EON) 
In data communications, the character that terminates the end of a phone number 
supplied for an automatic calling unit (ACU). 

end-of-text character (ETX) 
A keyboard character used to signal the end of input. 

EOF 
See end of file. 

EOJ 
See end of job. 

EON 
See end-of-number character. 

EOT 
See end of task, end of transmission. 

epilog procedure 

ESC 

A procedure that is automatically executed just before control exits the block in 
which the epilog procedure is declared. The epilog procedure is executed even if 
the block exit is caused by an. error or a DS (Discontinue) system command. 

See escape character. 

Glossary-l0 8600 0841-000 



Glossary 

escape character (ESC) 

ETX 

(ANDIPS) A code extension character used, in some cases with one or more 
succeeding characters, to indicate by some convention or agreement that the 
coded representations following the character or the group of characters are to be 
interpreted according to a different code or according to a different coded 
character set. See data link escape character. 

See end-of-text character. 

execution 

exit 

F 

family 

field 

file 

The act of processing statements in a program. 

To end the processing of an entered block. Exiting the block eliminates the 
activation record. 

(1) One or more disks logically grouped and treated as a single entity by the 
system. Each family has a name, and all disks in the family must have been 
entered into the family with the RC (Reconfigure Disk) system command. 
(2) The name of the disk or disk pack on which a physical file is located. 
(3) See also process family. 

(1) An area on a screen or form in which data is displayed or entered. The 
delimiters of the field can be visible or invisible to the terminal operator. 
(2) A consecutive group of bits within a word or a component of a record that 
represents a logical piece of data. 

A named group of related records. See logical file, physical file. 

file attribute 
An element that describes a characteristic of a file and provides information the 
system needs to handle the file. Examples of file attributes are the file title, 
record size, number of areas, and date of creation. For disk files, permanent file 
attribute values are stored in the disk file header. 

file relative station number (FRSN) 

format 

A number assigned to each station in a data communications file in the order that 
the stations are described in the network information file II (NIFII). 

(1) The organization of an array of storage points in memory. Formats, and other 
memory structures, make it possible for the Master Control Program (MCP) to 
identify and move areas of memory. 
(2) The specific arrangement of a set of data. 

8600 0841-000 Glossary-II 



Glossary 

FRSN 

(3) In the Generalized Message Control System (GEMCOS), a list of instructions 
informing the message control system (MCS) which data types (such as' alpha or 
integer) to expect in message fields and how to manipulate these fields. Formats 
are defined in the Global section of the transaction control language (TCL). 
(4) In the Screen Design Facility Plus (SDF Plus), the component that contains 
instructions on how to display data in a field. 

See file relative station number. 

fully participating MCS 

function 

H 

A feature that allows a message control system (MCS) to participate in the 
remote file operations and the data communications functions such as DCWRITE 
procedures performed on a station after control of that station has been 
transferred to another MCS. 

(1) An assigned purpose, activity, or significance. 
(2) A subroutine that returns a value. 
(3) See also typed procedure. 

handshake 

hex 

(1) The exchange of predetermined signals when a connection is established 
between two data set devices. 
(2) In the Generalized Message Control System (GEMCOS), the exchange of 
,predetermined signals that is used for batch program initialization when a 
connection is established between two, data set devices. 

See hexadecimal. 

hexadecimal (hex) 
Pertaining to the base 16 numbering system. Decimal digits 0 through 9 are 
represented by the characters 0 through 9. Decimal digits 10 through 15 are 
represented by the characters A through F. 

hidden message 
In DCALGOL, an array row in main memory that contains information about the 
physical queues such as the number of messages in the queue, the amount of 
main memory used by the queue, and the number of people who use the queue. 

horizontal parity check 

host 

In data communications, a parity check that uses the appended block check 
character (BCC) to verify the cumulative validity of all preceding characters in a 
block. 

(1) An independent system in a network. Each host has its own operating system 
and resources and is identified bya hostname. 

Glossary-12 8600 0841-000 



I/O 

IDC 

Glossary 

Input/output. An operation in which the system reads data from or writes data to 
a file on a peripheral device such as a disk drive. 

See Interactive Datacomm Configurator. 

identifier 

index 

integer 

(1) A label. 
(2) One node of a file name. 
(3) In ALGOL, the name given to a declared item in a program. 
(4) In the Semantic Information Manager (SIM), a string of up to 30 characters. 

(1) A value usedto specify a particular element of an array variable. 
(2) A computer storage location, the contents of which identify a particular 
element in a table. 
(3) In the Semantic Information Manager (SIM), a logical SIM construct that can 
be used to optimize query performance, enforce uniqueness constraints, or 
provide a basis for specifying Data Management System II (DMSII) mapping 
options. Each index has three parts: a name, a target, and a key. The target is a 
class that the index spans, and the key is one or more data-valued attributes 
(DV As) that determine the way in which the index is to be used. 

(1) A whole number. 
(2) In COBOL, a numeric literal or a numeric data item that does not include any 
character positions to the right of the assumed decimal point. 

Interactive Datacomm Configurator (IDC) 

J 

A Unisys interactive, menu-driven utility that enables the user to create, 
interrogate, and modify data communications network configurations. 

job queue 

L 

A structure in the sytstem software that stores a list of jobs that have been 
compiled and are waiting to be initiated. 

leased line 
A connection established without the use of switching facilities for the exclusive 
use of two or more data stations. A leased line is also referred to as a leased 
channel, leased circuit, leased connection, dedicated circuit, dedicated channel, or 
dedicated line. See private line. 

8600 0841-000 Glossary-13 



Glossary 

library 
(1) A collection of one or more named routines or library objects that are stored 
in a file and can be accessed by other programs. 
(2) A program that exports objects for use by user programs. 
(3) (VDP) A collection of related files. 

library maintenance 

line 

A procedure that copies disk files from a disk to a disk, from a disk to a tape, 
from a tape to a disk, and from a tape to a tape. The procedure is invoked by the 
Work Flow Language (WFL) ADD or COpy statements. 

(1) A row of text in a printout. 
(2) A data transmission link between two computers or between a computer and 
its associated terminals. 
(3) In X.25, the portion of a data circuit external to the data circuit terminating 
equipment (DCE) that connects the data terminal equipment (DTE) to an 
exchange or to one or more DCEs, or connects two exchanges. 
(4) In Network Definition Language II (NDLII), a logical construct representing a 
particular line adapter and all data structures associated with that line adapter. 
(5) In the Interactive Datacomm Configurator (lDC), a data structure that 
describes a physical line in the configuration. 

line support processor (LSP) 

link 

The data communications subsystem processor that manages communication with 
the host and initiates processes that control the input of messages to and the 
output of messages from data communications lines. 

(1) In Data Management System II (DMSII), a field that enables one data set 
record to refer to another. 
(2) In the Communications Management System (COMS), to join the application 
program to COMS. 

linked list 

logging" 

A memory structure used to link available memory areas. Memory links are 
words that precede and trail memory areas. Links for available memory areas 
point to the previous and next areas in the list so that the operating system can 
iocate available memory." 

The process of recording events and, often, their times of occurrence. 

logical file 
A file variable declared in a program, which represents the file and its structure 
to the program. A logical file has no properties of its own until it is described by 
file attributes or associated with a physical file. 

logical station number (LSN) 
(1) In the Network Definition Language II (NDLII), a unique number assigned to 
each station in a network. Each station has an LSN assigned according to the 
order in which the stations are defined in NDLII. The first defined station is 1. 

Glossary .... 14 8600 0841-000 



LSN 

LSP 

M 
mapping 

Glossary 

(2) In the Interactive Datacomm Configurator (IDC), a unique number assigned to 
each station structure. When IDC creates the DATACOMINFO file from the 
network information file II (NIFII), it assigns an LSN to each structure 
sequentially, beginning with the number 2. The numbers allocated by IDC are the 
same as those used by the operating system to identify a station. 

See logical station number. 

See line support processor. 

(1) A transformation from one set to another set. 
(2) A correspondence. 
(3) A description of the way in which different record types of a database are 
associated with one another. 
(4) The process of associating Semantic Information Manager (SIM) logical 
structures with the underlying Data Management System II (DMSII) physical 
structures. Mappings specify how SIM entities are to be represented in the DMSII 
database. 

Master Control Program (MCP) 

MCP 

MCS 

memory 

message 

An operating system on A Series systems. The MCP controls the operational 
environment of the system by performing job selection, memory management, 
peripheral management, virtual memory management, dynamic subroutine 
linkage, and logging of errors and system utilization. . 

See Master Control Program. 

See message control system. 

A temporary storage area where data and programs· are placed while they are 
being processed. 

(1) Any combination of characters and symbols designed to communicate 
information from an originator to one or more destinations. 
(2) The text sent to the user from a program. A message can be either displayed 
on the screen or printed. 
(3) In data communications, any information-containing data unit, in an ordered 
format, sent by means of a communications process to a named network entity or 
interface. A.message contains the information (text portion) and controls for 
routing and handling (header portion). 
(4) In Data Communications ALGOL (DCALGOL), a special form of array. Two 
types of messages are recognized by a message control system (MCS): those used 

8600 0841-000 Glossary-IS 



Glossary 

with DCALGOL DCWRITE statements and those g'enerated elsewhere in the data 
communications subsystem that appear in an MCS queue. 
(5) In COBOL, data associated with an end-of-message indicator or an 
end-of-group indicator. 

message area 
In the Communications Management System (COMS), an area of the 
communication structure in which the message is contained. 

message control indicator 
A value used to select a type of output for a message. 

message control system (MCS) 

MLS 

modem 

(1) A program that controls the flow of messages between terminals, application 
programs, and the operating system. MCS functions can include message routing, 
access control, audit and recovery, system management, and message formatting. 
(2) In X.25, a program that acts as an interface between the application and the 
Network Definition Language II (NDLII) and handles such functions as routing, 
security, auditing, and changes in the network. 

See multilingual system. 

A device placed between a computer system and a telephone line to permit 
transmission of digital pulses. Modems permit computers to communicate with 
other computers, terminals, and printers over communic~tion lines. The term 
modem is derived from modulator-demodulator. 

multilingual system (MLS) 

N 

NCAR 

NDLII 

nesting 

A system for developing and accessing output messages, online help text, and 
menu screens in different natural languages, such as English, French, and 
Spanish. 

See noncharacter array row. 

See Network Definition Language II. 

(1) The practice of declaring a procedure within another procedure. 
(2) In RPG, the practice of containing a structured programming operation within 
another. 

Network Definition Language II (NDLII) 
The Unisys language used to describe the physical, logical, and functional 
characteristics of the data communications subsystem to network support 

Glossary-16 8600 0841-000 



Glossary 

processors (NSPs), line support processors (LSPs), and data communications data 
link processors (DCDLPs). 

network information file II (NIFII) 
The file generated when a Network Definition Language II (NDLII) program is 
compiled. This file contains line support processor (LSP) and network support 
processor (NSP) code, data structures, and other information. A NIFII is also 
generally referred to as a network information file (NIF). 

network support processor (NSP) 

NIFII 

A data communications subsystem processor that controls the interface between a 
host system and the data communications peripherals. The NSP executes the code 
generated by the Network Definition Language II (NDLII) compiler for line 
control and editor procedures. An NSP can also control line support processors 
(LSPs). 

See network information file II. 

noncharacter array 
A single dimension array whose size is measured in words, such as ARRAY A 
[0:10]. 

noncharacter array row (NCAR) 

NSP 

A row of a multidimension array whose size is measured in words and with the 
last subscript designated by an asterisk (*). 

See network support processor. 

null string 
An emptyor zero-length string. 

o 
object code 

The instructions in machine code that are created as a result of compiling source 
code. 

object code file 

octet 

ODT 

A file produced by a compiler when a program is compiled successfully. The file 
contains instructions in machine-executable object code. 

In data communications, 8 contiguous bits (1 byte). See also character. 

See operator display terminal. 

8600 0841-000 Glossary-17 



Glossary 

operator display terminal (ODT) 

overlay 

. P 

(I) A terminal or other device that is connected to the system in such a way that 
it can communicate directly with the operating system. The ODT allows 
operations personnel to accomplish system operations functions through either of 
two operating modes: system command mode or data comm mode. 
(2) The name given to the system control terminal (SeT) when it is used as an 
ODT. 

To load code or data into a memory area that was previously allocated to other 
code or data~ and to write any data that previously occupied the area to a disk 
file if necessary . 

pack (PK) 

page 

A random-access data storage device consisting of one or more circular platters 
that contain information recorded in concentric circular paths called tracks. Data 
on a pack are accessed by movable read/write heads. Some packs are removable. 
Synonym jor disk pack, disk. 

(1) A portion of a segmented array. 
(2) A structure in memory identified by unique address locations, or by 
subdivisions of a program running in memory. 
(3) In COBOL, a vertical division of a report representing a physical separation 
of report data. The separation is based on internal reporting requirements and/or 
external characteristics of the reporting medium. 
(4) In the Forms Manager, one side of a sheet of paper (physical page) or a form 
description and its window for variable data (logical page form). 
(5) In the Screen Design Facility Plus (SDF Plus), a division of a form image that 
represents the amount of data that can be displayed on a mainframe terminal at 
one time. 

paged array 
An array that is automatically divided (paged or segmented) at run time into 
smaller segments. 

parameter 
(I) A quantity or item of information that can be given a different value each 
time a process is repeated. 
(2) An identifier associated in a special way with a procedure. A parameter is 
declared in the procedure heading and is automatically assigned a value when the 
procedure is invoked. 
(3) An object or value that is passed from an actual parameter and received by a 
formal parameter. 
(4) An element of a command, statement, or procedure that enables a user to 
determine the exact functionality of that command, statement, or procedure. A 
parameter can be variable or constant, and required or optional. 

Glossary-I8 8600 0841-000 



Glossary 

participating MCS 
A feature of the data communications subsystem in which a message control 
system (MCS) can interpose itself between a station and a process that has a 
dialogue established with that station. The process need not be informed that the 
MCS is actually participating in the dialogue. The MCS can simply provide 
editing, translation, or message-switching services in a transparent manner. 

physical file 

PK 

priority 

A file as it is stored on a particular recording medium such as a disk or a tape. 

See pack. 

(1) A characteristic associated with a process that determines its precedence in 
the use of system resources. A process with higher priority executes more quickly 
than it would if it had lower priority. 
(2) In X.25, the sequence in which various entries and tasks are processed; the 
sequence is determined by the analysis of action codes and other 
priority-real-time systems. 

private line 
A dedicated communication circuit or channel provided for the exclusive use of a 
user. See leased line. 

privileged program 
An object code file marked as privileged with the PP (Privileged Program) system 
command. 

privileged user 
A user with the PU usercode attribute assigned to his or her usercode in the 
USERDATAFILE. No file-access security checking is normally performed for 
actions taken under a usercode with privileged status. 

procedure 

process 

(1) A block that can be invoked by statements elsewhere in the same program or, 
in some cases, by statements in another program. In most instances, a procedure 
has a procedure heading and a procedure body. Examples are a procedure in 
ALGOL, a procedure or function in Pascal, a subroutine or function in FORTRAN, 
or a complete COBOL program. 
(2) In COBOL, a paragraph or group of logically successive paragraphs, or a 
section or group of logically successive sections, within the PROCEDURE 
DIVISION. 

(1) The execution of a program or of a procedure that was initiated. The process 
has its own process stack and process information block (PIB). It also has a code 
segment dictionary, which can be shared with other processes that are executions 
of the same program or procedure. 
(2) A software application; that is, any activity or systematic sequence of 
operations that produces a specified result. 

8600 0841-000 Glossary-19 



Glossary 

(3) In the Advanced Data Dictionary System (ADQS), a structure that models a 
logical view of relationships between different parts· of a system. 

process family 
A group of processes consisting of a single job and any tasks that are descendants 
of that job. 

pseudo station 

Q 
queue 

A station created by the operating system that can be attached to, and controlled 
by, a message control system (MCS) like a real station. Unlike a real station, 
however, a pseudostation is not declared in the SOURCENDLII file or the 
DATACOMINFO file, has no line assigned, and does not need a corresponding 
physical terminal on the local host. 

(1) A data·structure used for storing objects; the objects are removed in the same 
order they are stored. 
(2) In Data Communications ALGOL (DCALGOL), a linked list of messages. 
(3) See also job queue, ready queue. 

queue array 
An indexable array that has elements that are queues rather than values. A 
queue array is never a segmented array. If a procedure is not invoked by a run 
statement, a queue array can be declared as a parameter to that procedure and 
can be passed by name only. 

queue array reference 

R 

read 

ready 

In Data Communications ALGOL (DCALGOL), an identifier declared to reference a 
queue array, which is an array in main memory containing information about a 
DCALGOL physical queue. 

(1) The process of acquiring or interpreting data from an outside medium. 
(2) (ANDIPS) To acquire or to interpret data from a storage device, from a data 
medium, or from another source. 

In BNA, the condition that enables a station to receive data that is sent to it. 

ready queue 

rebuild 

A list, maintained by the operating system, of the processes that are waiting for 
service from a processor. 

(1) In the disk subsystem, a concept that refers to either of the following: a 
family rebuild, in which the system constructs the file access structure table 

Glossary-20 8600 0841-000 



Glossary 

(FAST) entry for a family by reading its system directory; or a catalog rebuild 
(on a cataloging system), in which the system updates the file access structure 
table (FAST) entry with information about cataloged files. 
(2) In database management, a recovery process in which the entire database is 
loaded from one or more sets of dump tapes. The recovery process then applies 
the audit trail after-update record images to move the database forward in time. 

remote file 
A file with the KIND attribute specified as REMOTE. A remote file enables object 
programs to communicate interactively with a terminal. 

remote terminal 
A terminal connected to the system by a switched or private telephone line. 

reserved word 

RI 

A word that has special meaning within a programming language and that 
generally cannot be redefined or redeclared by the programmer. 

See ring indicator. 

ring indicator (RI) 

ron time 

s 

A signal provided by a data circuit terminating equipment (DCE) unit to indicate 
that the phone is ringing. 

The time during which an object code file or user interface system (UIS) is 
executed. Synonym for execution time and, in COBOL, object time. 

save memory 
An area of memory that cannot be overlaid as long as the item with which it is 
associated is allocated. 

save storage 
See save memory. 

schedule station 

seT 

sector 

A dummy data communications station provided by Command and Edit language 
(CANDE) to run schedule sessions and open remote files. The schedule station 
behaves programmatically like a real station for most purposes. 

See system control terminal. 

(1) A subdivision of a track on a disk. A sector is the minimum addressable area 
on a disk pack. Unisys A Series system sectors are 30 words, or 180 bytes, long. 

8600 0841-000 Glossary-21 



Glossary 

segment 
(1) Synonym for sector. 
(2) A contiguous region of memory that is referred to by a descriptor and stores 
code or data for use by a process. 
(3) On microcomputers using the INTELINTEL is a registered trademark of Intel 
Corporation. 8088, 8086, and 80X86 line of microprocessors, the first part of a 
two-part memory address. The segment is a 16-bit number that is first multiplied 
by decimal 16 (hex 10) and then added to another 16-bit number, the offset, to 
obtain a 20-bit memory address. See also offset. 

segmented array 

SIRW 

stack' 

See paged array. 

See stuffed indirect reference word. 

A region of memory used to store data items in a particular order, usually on a 
last-in, first-out basis. Synonymfor process stack. 

statement identifier 

station 

The identifier that identifies a program source statement. 

(1) The outer end of a communication line. A station can correspond to a single 
terminal connected on a single line, or several stations can be connected on a line. 
(2) The combination of functional units comprising the data terminal equipment 
(DTE), data circuit terminating equipment (DCE), and their common interface. 
(3) In the Interactive Datacomm Configurator (lDC), a data structure that 
describes the attributes of a physical terminal. 
(4) In data communications, a data structure that relates a logical abstraction to 
either a physical device or a pseudostation. 

stuffed indirect reference word (SIRW) 

subscript 

A word that references a location in an addressing environment. The form of the 
reference is such that the SIRW always points to the same location, no matter 
what the state of the current addressing environment. 

(1) A number that is an index into an array. 
(2) In COBOL, an integer whose value identifies a particular element in a table. 

subscripted queue 
A queue that is formed by subscripting a queue array and that is represented by 
a queue reference word accessed through one or more data descriptors. 

suspended process 
A process that has temporarily stopped executing and cannot continue until 
appropriate operator or programmatic action is taken. A process can be 
suspended deliberately by an operator command or a statement in a program. In 
addition, the operating system can suspend a process automatically, for example, 
if the process has requested a file that is missing. 

Glossary-22 8600 '0841-000 



Glossary 

switched line 
In data communications, a communications link for which the physical path, 
established by dialing, can vary with each use. 

symbol file 

symbolic 

synch 

A file that contains a source program. 

(1) A source program. 
(2) In the Semantic Information Manager (SIM), a data type that defines a set of 
related values. If the order of the values is significant, the symbolic values can be 
declared as ordered. The values must be unique SIM identifiers. 
(3) See also identifier. 

See synchronous transmission. 

synchronous transmission 

syntax 

In data communications, a mode of data transmission in which each bit of data is 
transmitted at a frequency determined by an external clock source. 

The rules or grammar of a language. 

syntax error 
An error that occurs when the rules or grammar of a language are violated. 

system command 
Any of a set of commands used to communicate with the operating system. 
System commands can be entered at an operator display terminal (OOT), in a 
Menu-Assisted Resource Control (MARC) session, or by way of the OCKEYIN 
function in a privileged Data Communications ALGOL (DCALGOL) program. 

system control terminal (SeT) 

T 

tanking 

(1) A terminal or other device that is connected to the system in such a way that 
it can communicate directly with the maintenance processor. An SCT can operate 
in maintenance mode or in operator display terminal (ODT) mode. On some 
systems, the SeT also provides a remote support mode. 
(2) A terminal used to enter information. An SCT can be used three ways: as an 
operator display terminal (ODT) to interface with the operating system, as a 
maintenance display terminal (MDT) to interface with the maintenance 
subsystem, or as a remote display terminal (RDT) to interface with remote 
support. The windows providing these uses are available once the automatic 
initialization sequence has finished. 

(1) In the transaction processing system (TPS), the operation in which the 
transaction processor (TP) library stores transactions in a tank journal and does 

8600 0841-000 Glossary-23 



Glossary 

terminal 

not process them against the database. A tank journal can be any transaction 
journal except the TRHISTORY journal. 
(2) The practice of temporarily storing output messages in a disk file because 
the destination station is unavailable. The operating system and the 
Communications Management System (COMS) both perform tanking. 
(3) The practice of temporarily storing messages from a Data Communications 
ALGOL (DCALGOL) queue in a disk file until the receiving process is ready to 
read the messages. . 

(1) An I/O device designed to receive or send source data in a network. 
(2) In X.25, a functional unit of a node through which data can enter or leave a 
data network. 
(3) In COBOL, the originator of a transmission to a queue or the receiver of a 
transmission from a queue. 
(4) In the Interactive Datacomm Configurator (lDC), a data structure that has 
the subset of the station attributes that correspond to the physical characteristics 
of a terminal, rather than the attributes that describe its use. 

timestamp 
An encoded, 48-bit numerical value for the time and date. Various timestamps are 
maintained by the system for each disk file. Timestamps note the time and date a 
file was created, last altered, and last accessed. 

TOGs and TALLYs 
Fields within the network support processor (NSP) request sets that can be used 
to transfer information between the message control system (MCS) and the 
Network Definition Language II (NDLII) programs. 

translate table 
See translation table. 

translation table 

u 

(1) In the Interactive Datacomm Configurator (lDC), a table that specifies a 
character translation function. Each line in the configuration has an associated 
translation table. The translation table specifies the translation to and from 
EBCDIC and the character representation used on the line. Translation tables are 
also used by some algorithms and editors for special character translation. 
(2) In the Data Transfer System (DTS), a table that is used to translate 
characters during an input or output transfer. Only the data portion of the DTS 
protocol with message IDs 4 and 6 is translated. 
(3) In the LTTABLEGEN utility, an array that, given the character output by the 
system, defines the physical data byte sent to printers. Normally, the character 
output and the physical data byte are the same. However, invalid characters are 
usually translated to a question mark (?). 

unit number 
A number assigned by an installation to a peripheral device, such as a disk drive, 
and used to identify the device. The unit number commonly appears in 

Glossary-24 8600 0841-000 



v 
variable 

Glossary 

conjunction with an acronym indicating the type of unit, which provides a unique 
identifier for a particular peripheral. 

(1) An object in a program whose value can be changed during program 
execution. 
(2) In the Screen Design Facility Plus (SDF Plus), a component of a form that 
stores data entered in the fields of the form image or the return value for a menu 
or a function key. A variable is also referred to as a display variable. 

vertical parity check 
A parity check that verifies the validity of individual characters in a block. 

w 
wait for supplementary dial tone (WFSD) 

WFL 

WFLjob 

WFSD 

In data communications, an operator that causes the automatic calling unit (ACU) 
to wait until it detects a supplementary dial tone before proceeding. 

See Work Flow Language. 

(1) A Work Flow Language (WFL) program, or the execution of such a program. 
(2) A collection of Work Flow Language (WFL) statements that enable the user to 
run programs or tasks. 

See wait for supplementary dial tone. 

window dialogue 

word 

In the Communications Management System (COMS), a particular access to a 
program environment through a COMSwindow at a station. The exact number of 
window dialogues allowed at one time for a given window depends on the 
constraints established through the COMS Utility. No more than eight window 
dialogues are allowed at one time for any window. Each dialogue has an 
identifying number within its window. 

(1) A unit of computer memory. On A Series systems, a word consists of 48 bits 
used for storage plus tag bits used to indicate how the word is interpreted. 
(2) In COBOL, a character-string of not more than 30 characters that forms a 
user-defined word, a system-name, or a reserved word. 
(3) In Reporter III, a combination of not more than 30 characters that can consist 
of the alphabetic characters A through Z, the numeric characters 0 through 9, 
and the hyphen (-). A word must contain at least one alphabetic character and 
cannot begin or end with a hyphen. 

8600 0841-000 Glossary-25 



Glossary 

word array 
In ALGOL, an array that uses one or two A Series words in each array element. 
Contrast with character array .. 

Work Flow Language (WFL) 

write 

A Unisys language used for constructing jobs that compile or run programs on 
A Series systems. WFL includes variables, expressions, and flow-of-control 
statements that offer the programmer a wide range of capabilities with regard to 
task control. 

(1) The process of transferring information to an output medium. 
(2) To record data in a storage device or location, or in a register. 

Glossary-26 8600 0841-000 



Bibliography 

A Series ALGOL Programming Reference Manual, Volume 1: Basic 
Implementation (8600 0098). Unisys Corporation. 

A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces 
(8600 0734). Unisys Corporation. 

A Series ALGOL Test and Debug System (TADS) Programming Guide (1169539). 
Unisys Corporation~ 

A Series BNA Version 1 Operations Guide (8600 0783). Unisys Corporation. 

A Series BNA Version 1 ProfJram Agent Programming Guide (1169653). Unisys 
Corporation. 

A Series BNA Version 2 Operations Guide (1222720). Unisys Corporation. 

A Series BNA Version 2 User Program Agent Programming Guide (3987 5135). 
Unisys Corporation. 

A Series CANDE Operations Reference Manual (86001500). Unisys Corporation. 

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic 
Implementation (8600 0296). Unisys Corporation. 

A Series COBOLANSI-74 Programming Reference Manual, Volume 2: Product 
Interfaces (8600 0130). Unisys Corporation. 

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide 
(1169901). Unisys Corporation. 

A Series Communications Management System (COMS) CO'Iffigu,ration Guide 
(86000312). Unisys Corporation. 

A Series Communications Management System (COMS) Migration Guide 
(8600 1567). Unisys Corporation. 

A Series Communications Management System (COMS) Operations Guide 
(86000833). Unisys Corporation. 

A Series Communications Management System (COMS) Programming Guide 
(86000650). Unisys Corporation. 

86000841-010 Bibliography--l 



Bibliography 

A Series Disk Subsystem Administration and Operations Guide (8600 0668). 
Unisys Corporation. 

A Series Distributed Systems Service (DSS) Operations Guide (8600 0122). 
Unisys Corporation. 

A Series File Attributes Programming Reference Manual (8600 0064). Unisys 
Corporation. 

A Series GETSTATUS/SETSTATUS Programming Reference Manual (8600 0346). 
Unisys Corporation. 

A Series I/O Subsystem Programming Guide (8600 0056). Unisys Corporation. 

A Series Interactive Datacomm GO'1iflgurator (IDG) Operations Guide (1169810). 
Unisys Corporation. 

A Series MultiLingual System (MLS) Administration, Operations, and 
Programming Guide (86000288). Unisys CorpOration. 

A Series Network Definition Language II (NDLlI) Programming Reference 
Manual (1169604). Unisys Corporation. 

A Series Security Administration Guide (8600 0973). Unisys Corporation. 

A Series System, Commands Operations Reference Manual (8600 0395). Unisys 
Corporation. 

A Series System Software Support Reference Manual (8600 0478). Unisys 
Corporation. 

A Series System Software Utilities Operations Reference Manual (8600 0460). 
Unisys Corporation. 

A Series Systems Functional Overview (8600 0353). Unisys Corporation. 

A Series SYSTEMSTATUS Programming Reference Manual (8600 0452). Unisys 
Corporation. 

A Series Task Attributes Programming Reference Manual (8600 0502). Unisys 
Corporation. 

A Series Work Flow Language (WFL) Programming Reference Manual 
(8600 1047). Unisys Corporation. 

American National Dictionary for lriforma,tion Processing Systems (technical 
report). American National.Standards Committee X3, Information Processing 
Systems. Washington, D.C.: Computer and Business Equipment Manufacturers 
Association (CBEMA), 1982. 

Bibliography-2 8600 0841-010 



Bibliography 

Dictionary of Computing. Frank J. Galland (ed.). New York: John Wiley & Sons, 
1982. 

Vocabulary for Data Processing, Telecommunications, and Office Systems 
(GC10-1699-6). Poughkeepsie, New York: International Business Machines 
Corporation, 1981. 

86000841-010 Bibliography-3 





Index 

A 

ACKNOWLEDGE DCWRITE (DCWRITE 
Type = 44), 5-55 

<action labels or finished event>, 2-7 
<action parameter>, 3-35 
ADD STATION TO FILE DCWRITE 

(DCWRITE Type = 67), 5-78 
ALLOCATE statement, 2-1 
<arithmetic expression>, 2-1 

in <action parameter>, 3-35 
in ALLOCATE statement, 2-1 
in <character count>', 3-40 
in CONTROLCARD function, 3-4 
in DCSYSTEMTABLES function, 3-12 
in <destination address>, 3-7 
in <destination unit number> ,3-7 
in <diskheader attribute>, 4-1 
in diskheader CLEAR statement, 2-6 
in <file group>, 2-7 
in GETSTATUS function, 3-19 
in <instuff parameter>, 3-36 
in <locator parameter>, 3-35 
in <number of segments per 

block>, 3-7 
in QUEUEINFO function, 3-24 
in SETST ATUS function, 3-26 
in <size>, 2-11 
in <source address>, 3-7 
in <source unit number> ,3-7 
in SYSTEMS TAT US function, 3-34 
in <unit number>, 3-40 

<arithmetic variable>, 3-7 
<array identifier>, 2-14 
<array reference identifier>, 2-14 
<array row> 

in <noncharacter array row>, 2-4 
in <real array row>, 3-36 
in <single-precision a~ray row>, 3-9 

ATTACH SCHEDULE STATION DCWRITE 
(DCWRITE Type = 5), 5-33 

ATTACH statement, 2-2 
attachment queues, 6-8 

8600 0841-000 

ATT ACHSPOQ function, 3-1 
attributes, 4-1 

diskheader, 4-1 
logical line, 5-101 
physical line, 5-100 
queue, 4-8 

AUTOSWITCHTOMARC task 
attribute, 4-14 

B 

BACKUPFAMILY task attribute, 4-15 
BLOCKSIZE diskheader attribute, 4-3 
<Boolean expression> 

in DCERRORANALYSIS function, 3-9 
in <priority>, 2-3 
in USERDATAFREEZER 

function, 3-37 
<bound pair> 

in DISKHEADER ARRAY 
declaration> , 1-1 

<bound pair list> 
in MESSAGE ARRAY declaration, 1-6 

c 
calls, intrinsic (See functions), 3-1 
CHANGE CURRENT QUEUE DCWRITE 

(DCWRITEType = 32) 
required fields, 5-36 

CHANGE TERMINAL ATTRIBUTES 
DCWRITE (DCWRITE Type = 

68), 5-80 
<character count>, 3-40 
CHECKGUARDFILE function, 3-2 
COMBINE statement, 2-3 

in QUEUE declarations, 1-11 
CONTROLCARD function, 3-4 

WFL card image (Variant = 1), 3-5 
COpy function, 3-7 
current attachment queues, 6-8 

Index-1 



Index 

D 

DA TE diskheader attribute, 4-3 
DCERRANALYSIS function, 3-9 
DCERRORLOGGER function, 3-11 
DCSYSTEMTABLES function, 3-12 
DCWRITE errors, 5-101 
DCWRITE function, 1-8,3-15,5-3 

ACKNOWLEDGE, 5-55 
ADD STATION TO FILE, 5-78 
ATTACH SCHEDULE STATION, 5-33 
CHANGE CURRENT QUEUE,· 5-36 
CHANGE TERMINAL 

ATTRIBUTES, 5-80 
DIALOUT, 5-86 
DISABLE INPUT, 5-43 
DISCONNECT, 5-88 
ENABLE INPUT, 5-41 
errors, 5-101, 5-104 

(table), 5-7 
EXCHANGE LSPS, 5-96 
FORCE LINE NOT READY, 5-93 
general discussion of, 5-1 
general format 

LSN/FRSN/DLS field, 5-4 
message number field, 5-5 
priority output field, 5-4 
retry count field, 5-4 
(table), 5-2 
TALLY field, 5-4 
text, 5-5 
text size field, 5-4 
TOGGLE field, 5-4 
type field, 5-3 
variant field, 5-3 

in QUEUE declarations, 1-11 
index WRITE, 5-38 
INTER-MCS COMMUNICATE, 5-28 
INTERROGATE MCS, 5-24 
INTERROGATE STATION 

ENVIRONMENT, 5-29 
INTERROGATE SWITCHED 

STATUS, 5-89 
LINE INTERROGATE, 5-92 
line-oriented requests, 5-83 
MAKE LINE NOT READY, 5-85 
MAKE LINE READY, 5-83 
MAKE STATION READY/NOT 

READY, 5-44 
MCS calls on, 5-5 
MOVE/ ADD/SUBTRACT 

Index-2 

DCWRITE function (cont.) 
MOVE/ADD /SUBTRACT (cont.) 

errors, 5-101 
MOVE/ADD /SUBTRACT 

STATION, 5-98 
NULL STATION REQUEST, 5-61 
READ-ONCE ONLY, 5-40 
RECALL MESSAGE, 5-50 
reconfiguration requests, . 5-94 
results 

table, 5-11 
SEND MCS RESULT MESSAGE, 5-66 
SET APPLICATION NUMBER, 5-46 
SET CHARACTERS, 5-47 
SET PSEUDOSTATION 

ATTRIBUTES, 5-67 
SET TRANSMISSION NUMBER, 5-49 
SET/RESET AUTOANSWER, 5-90 
SET /RESET LINE 

TOGS-T ALLYS, 5-91 
SET /RESET LOGICALACK, 5-54 
SET/RESET SEQUENCE MODE, 5-62 
specific types, 5-17 
STATION ASSIGNMENT TO 

FILE, 5-69 
STATION ATTACH, 5-20 
STATION BREAK, 5-77 
STATION DETACH, 5-52 
STATION INTERROGATE 

information returned, 5-34 
SUBTRACT STATION FROM 

FILE, 5-82 
SWAP LINES, 5-94 
TRANSFER STATION 

CONTROL, 5-56 
type = 1, 5-20 
type = 101, 5-89 
type = 102, 5-90 
type = 103, 5-91 
type = 104, 5-92 
type = 128, 5-94 

. type = 129, 5-96 
type = 130, 5-98 
type = 131, 5-103 
type = 32, 5-36 
type = 33, 5-38 
type = 34, 5-40 
type = 35, 5-41 
type = 36, 5-43 
type = 37, 5-44 
type = 38, 5-46 
type = 39, 5-47 

8600 0841-000 



DCWRITE function (cont.) 
type = 4, 5-29, 5-34 
type = 40, 5-49 
type = 41, 5-50 
type = 42, 5-52 
type = 43, 5-54 
type = 44, 5-55 
type = 45, 5-56 
type = 46, 5-60 
type = 49, 5-62 
type = 5, 5-33 
type = 53, 5-64 
type = 56, 5-67 
type = 64, 5-69 
type = 65, 5-76 
type = 66, 5-77 
type = 67, 5-78 
type = 68, 5-80 
type = 69, 5-82 
type = 96, 5-83 
type = 98, . 5-86 
type = 99, 5-88 
type 105, 5-93 
type 2, 5-24 
type 3, 5-28 
type 48, 5-61 
type 55, 5-66 
type 97, 5-85 
types, (table), 5-6 
UPDATE LINE ATTRIBUTES, 5-103 
WRITE AND RETURN, 5-60 
WRITE TO OBJECT JOB, 5-76 
WRITE TO TRANSFERRED 

STATION, 5-64 
declarations, 1-1 

DISKHEADER ARRAY, 1-1 
EPILOG PROCEDURE, 1-2 
EXCEPTION PROCEDURE, 1-4 
MESSAGE, 1-6 
MESSAGE ARRAY, 1-6 
QUEUE, 1-10 
QUEUE ARRAY, 1-10 
QUEUE ARRAY REFERENCE, 1-12 

<destination address>, 3-7 
<destination unit number>, 3-7 
DESTNAME task attribute, 4-15' 
DESTSTATION task attribute, 4-15 
DIALOUT DCWRITE (DCWRITE Type = 

98), 5-86 
<direct array identifier>, 3-36 
<direct array row>, 3-40 

8600 0841-000 

Index 

DISABLE INPUT DCWRITE (DCWRITE 
Type = 36), 5-43 

DISCONNECT DCWRITE (DCWRITE Type 
= 99), 5-88 

DISK HEADER ARRAY declaration, 1-1 
<diskheader array identifier>, 1-1 

in DISKHEADER ARRAY 
declaration, 1-1 

in <diskheader array row>, 2-7 
in <diskheader attribute>, 4-1 
in diskheader CLEAR statement, 2-6 
in <file group>, 2-7 

<diskheader array row>, 2-7 
<diskheader attribute>, 4-1 
<diskheader attribute name>, ' 4-2 

in <diskheader attribute>, 4-1 
diskheader attributes, 4-1 

EOFBITS, 4-3 
EOFSEGMENT, 4-3 
EUNUMBER, 4-4 
FILEKIND, 4-4 
FILETYPE, 4-4 
lAD, 4-4 
LASTACCESSDATE, 4-4 
MAXRECSIZE, 4-5 
MINRECSIZE, 4-5 
MODE, 4-5 
ROW ADDRESS, 4-5 
ROWS, 4-5 
ROWSIZE, 4-6 
SA VEF ACTOR, 4-6 
SIZE2, 4-6 
SIZEMODE, 4-6 
SIZEOFFSET, 4-6 
UNITS, 4-7 

diskheader CLEAR statement, 2-6 
<diskheader I/O file part>, 2-7 
diskheader READ/WRITE 

statement, 2-7 
display form file title, 3-16 
<display location>, 3-16 
<display pointer>, 2-17 
DISPLAYONLYTOMCS task 

attribute, 4-15 
DISPLA YTOST ANDARD function, 3-16 
DLS UPDATE MCS RESULT (Class = 

12), 6-26 
DLS.[23:01], 5-9, 5-13 
DUPLICATED diskheader attribute, 4-3 

Index-3 



Index 

E 

ENABLE INPUT DCWRITE (DCWRITE 
Type = 35), 5-41 

EOFBITS diskheader attribute, 4-3 
EOFSEGMENT diskheader attribute, 4-3 
EPILOG PROCEDURE· declaration, 1-2 

example of, 1-3 
restrictions, 1-2 

<epilog procedure identifier>, 1-2 
in EPILOG PROCEDURE 

declaration, 1-2 
in <resident list>, 2-14 

error flag field (MSG.[I].[23:24]), 6-4 
ERROR MCS RESULT (Class = 

99), 6-58 
errors 

DCWRITE, 5-101, 5-104 
EUNUMBER diskheader attribute, 4-4 
<event designator>, 3-40 
EXCEPTION PROCEDURE, 1-4 

declaration, 1-4 
example, 1-5 
restrictions, 1-4 
when it is called, 1-4 

EXCHANGE LSPS DCWRITE (DCWRITE 
Type = 129), 5-96 

F 
FILE CLOSE MCS RESULT (Class ::::: 

4), 6-16 
<file group>, 2-7 
<file identifier>, 2-7 
FILE OPEN (Class = 2), 6-12 
file relative station number, 5-4 
file title 

display form, 3-16 
standard form, 3-16 

FILEKIND diskheader attribute, 4-4 
FILETYPE diskheader attribute, 4-4 
FLUSH statement, 2-10 
FORCE LINE NOT READY DCWRITE 

(DCWRITE Type = 105), 5-93 
<format identifier>, 2-14 
FRSN (file relative station number), 5-4 
full participation, 5-16 
functions, 3-1 

ATTACHSPOQ, 3-1 
CHECKGUARDFILE, 3-2 

Index-4 

functions (cont.) 

G 

CONTROLCARD, 3-4 
COPY, 3-7 
DCERRANALYSIS, 3-9 
DCERRORLOGGER, 3-11 
DCSYSTEMTABLES, 3-12 
DCWRITE, 3-15 
DISPLAYTOSTANDARD, 3-16 
GETSTATUS, 3-19 
MAKEUSERCODE, 3-20· 
MCSLOGGER, 3-22 
NULL, 3-23 
REMOVE, 3-25 
SETSTATUS, 3-26 
SETUPINTERCOM, 3-27 
SIZE, 3-33 
SYSTEMST A TUS, 3-34 
USERDA T A, 3-35 
USERDATAFREEZER, 3-37 
USERDATALOCATOR, 3-38 
USERDATAREBUILD, 3-39 
WRITESPO, 3-40 

GETSTATUS function, 3-19 
GOOD INPUT RECEIVED MCS RESULT 

(Class = 0), 6-9 
GOOD RESULTS MCS RESULT 

(Class = 5), 6-17 

H 

hidden dimension of a message 
array, 1-6 

hidden message, 1-10 
<host queue>, 2-3 

lAD diskheader attribute, 4-4 
<identifier>, 1-10 

in <diskheader array 
identifier>, 1-1 

in <epilog procedure 
identifier>, 1-2 

in <message array identifier>, 1-6 
in message identifier, 1-6 
in QUEUE ARRA~ declarations, 1-10 

8600 0841-000 



<identifier> (cont.) 
in <queue array reference 

identifier> , 1-12 
in QUEUE declarations, 1-10 

indexing, 5-24 
INHERITMCSST ATUS task 

attribute, 4-15 
<input designator>, 3-4' 
INPUT FROM AN ODT MCS RESULT' 

(Class = 81),· 6-57 
<insert source part>, 2-11 
INSERT statement, 2-11 

in QUEUE declarations, 1-11 
<instuff parameter>, 3-36 

in USERDAT A function, 3-35 
INTERCEPTED MESSAGE MCS RESULT 

(Class = 29), 6-51 
INTER-MCS COMMUNICATE DCWRITE 

(DCWRITE Type = 3), 5-28 
INTER-MCS COMMUNICATE MCS 

RESULT (Class = 13), 6-27 
INTERROGATE MCS DCWRITE 

(DCWRITE Type =. 2), 5-24 
INTERROGATE STATION 

ENVIRONMENT DCWRITE 
(DCWRITE Type = 4), 5-29 

INTERROGATE STATION 
ENVIRONMENT MCS RESULT 
(Class = 15), 6-30 

INTERROGATE SWITCHED STATUS 
DCWRITE (DCWRITE Type = 
101), 5-89 

intrinsic calls (See functions), 3-1 

L 

. LASTACCESSDATE diskheader 
attribute, 4-4 

line assignments, stations without, 5-74 
line attributes 

logical, 5-101 
physical, 5-100 

LINE INTERROGATE DCWRITE 
(DCWRITE Type = 104), 5-92 

LINE INTERROGATE MCS RESULT 
(Class = 24), 6-49 

LINE STATUS CHANGE MCS RESULT 
(Class = 9), 6-23 

line status prior to abort (MCS Error 
result message field), 6""",60 

line-oriented DCWRITE requests, 5-83 

8600 0841-000 

Index 

line/station format (MCS Error result 
message format), 6-58 

fields, 6-58 
<locator parameter>, 3-35 
logical line attributes, 5-101 
<lower bounds>, 1-12 
LSP EXCHANGE MCS RESULT 

(Class = 8), 6-21 

M 

MAKE LINE NOT READY DCWRITE 
(DCWRITE Type == 97), 5-85 

MAKE LINE READY DCWRITE 
(DCWRITE Type = 96), 5-83 

MAKE STATION READY/NOT READY 
DCWRITE (DCWRITE Type = 

37), 5-44 
MAKEUSERCODE function, 3-20 
MAXRECSIZE diskheader attribute, 4-5 
MAXWAIT task attribute, 4-16 
MCS information, indexing, 5-24 
MCS (See message control system, 5.:...24 
MCS result messages, 6-1 

FILE CLOSE (Class = 4), 6-16 
general format,. 6-1 

class field, 6-2 
error flag field, 6-4 
last error flag set field, 6-4 
LSN field, 6':"'4 
message number field, 6-6 
original DCWRITE type field, 6-7 
result-byte index field, 6-4 
retry count field, 6-5 
sequence number field, 6-7 
TALLY fields, 6-6 
text field, 6-7 
text size field, 6-6 
time field, 6-6 
toggle field, 6-4 
transmission number field, 6-6 
variant field, 6-3 

general format (table), 6-1 
input message classes,(table), 6-2 
specific message formats, 6-8 

DLS UPDATE (Class = 12), 6-26 
ERROR (Class = 99), 6-58 
FILE OPEN (Class = 2), 6-12 
GOOD INPUT RECEIVED (Class = 

0), 6-9 
GOOD RESULTS (Class = 5), 6-17 

Index-5 



Index 

MCS result messages (cont.) 
specific message formats (cont.) 

INPUT FROM AN ODT (Class = 

81), 6-57 
INTERCEPTED MESSAGE 

(Class = 29), 6-51 
INTER-MCS COMMUNICATE 

(Class = 13), 6-27 
INTERROGATE STATION 

ENVIRONMENT (Class = 
'15), 6-30 

LINE INTERROGATE (Class = 

24), 6-49 
LINE STATUS CHANGE (Class = 

9), 6-'23 
LSP EXCHANGE (Class = 8), 6-21 
MESSAGE FROM CONTROLLER 

(Class = 21), 6-46 
MOVE/ADD/SUBTRACT STATION 

(Class = 11), 6-25 
NSPINITIALIZED 

(Class = 30), 6-53 
OBJECT JOB INPUT REQUEST 

(Class = 25), 6-50 
OBJECT JOB OUTPUT (Class = 

3), 6-15 
ODT MODE SWITCH NOTICE 

(Class = 80), 6-56 
ODT-TO-MCS (Class = 17), 6-43 
ODT-TO-STATION 

(Class = 18), 6-44 
POWER OFF PENDING (Class = 

32), 6-55 
RECALLED MESSAGE (Class = 

6), 6-19 
STATION DETACHED (Class = 

14), 6.l...28 
STATION EVENT (Class = 

1), 6-10 
STATION REINITIALIZED 

(Class = 31), 6-54 
SWAP LINE (Class = 10), 6-24 
SWITCHED STATUS (Class = 

7), 6-20 
TRANSFER STATION CONTROL 

(ClasS = 16), 6'-40 
UPDATE LINE ATTRIBUTES 

(Class = 19), 6-45 
MCSLOGGER function, 3-22 
MESSAGE ARRAY declaration, 1-6 
message array, hidden dimension, 1-6 
<message array, identifier>, 1-6 

Index-6 

<message array identifier> (cont.) 
in MESSAGE ARRAY declaration, 1-6 
in <message designator>" 2-1 
in <message group designator>, 2-1 

message control system (MCS) 
error result message formats, 6-58 
participation in data comm 

functions, 5-16 . 
participation in I/O, 5-73 
sample, A-I 

MESSAGE declaration, 1-6 
<message designator> 

in DCWRITE function, 3-15 
in <insert source part>, 2-11 
in <message group designator>, 2-1 
in NULL function, 3-23 
in REMOVE function, 3-25 

MESSAGE FROM CONTROLLER MCS 
RESULT (Class = 21), 6-46 

<message group designator>, 2-1 
in ALLOCATE statement, 2-1 
in DCERRORLOGGER function, 3-11 
in SIZE function, 3-33 

<message identifier> 
in MESSAGE declaration, 1-6 
in <message designator>, 2-1 

messages, result 
general format (table), 6-1 

MINRECSIZE diskheader attribute, 4-5 
MLSCAP ABLE parameter 

in SETUPINTERCOM function, 3-27 
MODE diskheader attribute, 4-5 
MOVE/ADD/SUBTRACT STATION 

DCWRITE (DCWRITE Type = 

130), 5-98 
errors, 5-101 

MOVE/ADD/SUBTRACT STATION MeS 
RESULT (Class = 11), 6-25 

MSG[O), 5-18 
MSG[O).[13:14) 

in DCWRITE 67, 5-78 
MSG[O).[15:08) 

in DCWRITE 4, 5-30 
MSG[0).[15:16] 

in DeWRITE 129, 5-96 
MSG[0).[22:07] 

in DeWRITE 129, 5-96 
MSG[0).[22:23] 

in DCWRITE 4, 5-29 
in DeWRITE 55, 5-66 
on exit from DCWRITE, 5-22 
on exiting DCWRITE, 5-23 

8600 0841-000 



MSG[0].[23:01] 
in DCWRITE 1, 5-21 
in DCWRITE 103, 5-91 
in DCWRITE 4, 5-30 

MSG[0].[23:10] 
in DCWRITE 67, 5-78 
in DC WRITE 69, 5-82 

MSG[0].[23:24], 5-4, 5-18 
and pseudostations, 5-22 
in DCWRITE 1, 5-21 
in DCWRITE 2, 5-24 
in DCWRITE 3, 5-28 
in DCWRITE 45, 5-57 
in DCWRITE 5, 5-33 
in DCWRITE 64, . 5-69 
in DCWRITE 65, 5-76 
in DCWRITE 66, 5-77 
in DCWRITE 67, 5-78 
in DCWRITE 68, 5-80 
in DCWRITE 69, 5-82 
on exit from DCWRITE, 5-22 

MSG[0].[24:01] 
in DCWRITE 1, 5-21 
in DCWRITE 3, 5-28 
in DCWRITE 40, 5-49 
in DCWRITE 43, 5-54 
in DCWRITE 64, 5-71 

MSG[0].[25:01], 5-98 
in DCWRITE 1, 5-21 
in DC WRITE 40, 5-49 

MSG[0].[25:02] 
in DCWRITE 64, 5-72 

MSG[0].[254:01] 
in DCWRITE 64, 5-71 

MSG[0].[26:01] 
in DCWRITE 1, 5-20 

MSG[0).[27:01], 5-57 
in DCWRITE 1, 5-20 

MSG[0).[27 :07] 
in DCWRITE 4, 5-30 

MSG[0].[28:01) 
in DCWRITE 1, 5-20 

MSG[0].[29:01] 
in DCWRITE 1, 5-20 

MSG[0].[29:06] 
and disposition of results, 5-22 
in DCWRITE 1, 5-20 
in DCWRITE 32, 5-36 
in DCWRITE 64, 5-69,5-73 

MSG[0).[31:0 1] 
and pseudostations, 5-22 
in DCWRITE 1, 5-20 

8600 0841-000 

MSG[0].[31 :08] 
in DCWRITE 39, 5-47 
on exit from DCWRITE, 5-22 

MSG[0].[32:01) 
in DCWRITE 39, 5-47 

MSG[0].[33:02] 
in DCWRITE 64, 5-70,5-72 
in DCWRITE 67, 5-78 

MSG[0].[35:02] 
in DCWRITE 64, 5-72 

MSG[0].[39:01] 
in DCWRITE 5, 5-33 

MSG[0].[39.16], 5-3 
MSG[0].[39:16], 5-62 

in DCWRITE 102, 5-90 
in DCWRITE 108, 5-94 
in DCWRITE 129, 5-96 
in DCWRITE 130, 5-98 
in DCWRITE 3, 5-28 
in DCWRITE 32, 5-36 
in DCWRITE 33, 5-38 
in DCWRITE 34, 5-40 
in DCWRITE 35, 5-41 
in· DCWRITE 37, 5-44 
in DCWRITE 38, 5-46 
in DCWRITE 4, 5-29 
in DCWRITE 41, 5-50 
in DCWRITE 42, 5-52 
in DCWRITE 44, 5-55 
in DCWRITE 45, 5-56 
in DCWRITE 48, 5-61 
in DCWRITE 49, 5-62 
in DCWRITE 53, 5-64 
in DCWRITE 56, .5-67 
in DCWRITE 64, 5-69,5-74 
in DCWRITE 65, 5-76 
in DCWRITE 67, 5-78 
in DCWRITE 68, 5-80 

MSG[0].[47:08], 5-3, 5-18 
example, 5-19 

MSG[1], 5-18 
MSG[11].[23:24], 5-18 
MSG[11].[47:24], 5-18 
MSG[12], 5-18 
MSG[1].[39:08], 5-4 
MSG[I].[47:08], 5-4 

in DCWRITE 44, 5-55 
MSG[2], 5-18 
MSG[2].[39:16], 5-4,5-11 

in DCWRITE 33, 5-38 
in DCWRITE 45, 5-57 
in DCWRITE 49, 5-62 

Index 

Index-7 



Index 

MSG[2].[39:16] (cont.) 
in DCWRITE 98, 5-86 

MSG[2].[ 4 7 :08], 5-4 
MSG[3], 5-18 
MSG[3].[23:24], 5-4 
MSG[3].[47:24] 

in DCWRITE 55, 5-66 
MSG[4].[47:24], 5-5 
MSG[6], 5-5 

in DCWRITE 103, 5-91 
in DC WRITE 2, 5-24 
in DCWRITE 68, 5-80 

MSG[6].[07:08] 
in DC WRITE 2, 5-25 
in DCWRITE 45, 5-57 

MSG[6].[14:01=] 
in DC WRITE 56, 5-67 

MSG[6].[15:01] 
in DCWRITE 56, 5-67 

MSG[6].[15:08] 
in DCWRITE 2, 5-25 
in DCWRITE 45, 5-57 

MSG[6].[23:08] 
in DCWRITE 2, 5-25 

MSG[6].[23:16] 
in DCWRITE 56, 5-67 

MSG[6].[23:24] 
in DCWRITE 40, 5-49 

MSG[6].[26:27] 
in DCWRITE 49, 5-62 

MSG[6].[31:16] 
in DCWRITE 56, 5-67 

MSG[6].[39: 16] 
in DCWRITE 56, 5-67 

MSG[6].[44:05] 
in DCWRITE 56, 5-67 

MSG[6].[46:01] 
in DCWRITE 56, 5-67 

MSG[6].[46:02] 
in DCWRITE 56, 5-67 

MSG[6].[47:16] 
in DCWRITE 56, 5-67 

MSG[6].[47:24] 
in DCWRITE 39, 5-47 
in DCWRITE 40, 5-49 

MSG[7] 
in DCWRITE 45, 5-57 

MSG[7].[23:01] 
in DCWRITE 130; 5-98 

MSG[7].[23:24] 
in DCWRITE 108, 5-94 
in DCWRITE 131, 5-'-103 

Index-8 

MSG[7].[26:27] 
in DCWRITE 49, 5-62 

MSG[8].[31:08] 
in DCWRITE 130, 5-98 
in DCWRITE 131, 5-103 

MSG[8].[39:08] 
in DCWRITE 130, 5-98 

MSG[INX], 5-24, 5-26 
MSG[INX].[15:08] 

in DCWRITE 2, 5-26 
MSG[INX].[23:08] 

in DCWRITE 2, 5-26 
MSG[INX].[47:08] 

in DCWRITE 2, 5-26 
MSG[MSG[INX].[15:08)), 5-26 
MSG[MSG[INX).[15:08) 

in DC WRITE 2, 5-26 
MSG[MSG[INX].[23:08]], 5-26 
MSG[MSG[INX].[23 :08] 

in DCWRITE 2, 5-26 
MSG[NDLIILINEINX] 

in DCWRITE 130, 5-98, 5-103 
MSG[NDLIITERMINX] 

in DCWRITE 130, 5-98 

N 

NDLII LINE. TOG_1 and NDLII.TOG_O 
(MCS error result message 
format), 6-60 

<new queue>, 2-2 
<noncharacter array row>, 2-4 

in DCKEYIN statement, 2-4 
in DCSYSTEMT ABLES function, 3-12 
in GETSTATUS function, 3-19 
in <insert source part>, 2-:11 
in MAKEUSERCODE function,· 3-20 
in MCSLOGGER function, 3-22 
in REMOVE function, 3-25 
in SETSTATUS function, 3-26 
in SYSTEMST A TUS function, 3-34 

<noncharacter direct array row>, 3-40 
<nondirect array name>,2-14 

in <nondirect array row>, 2-14 
in <nondirect subscripted 

variable>, 2-14 
in <resident list>, 2-14 

8600 0841-000 



<nondirect array reference 
identifier>, 2-14 

<nondirect array row>, 2-14 
in <resident list>, 2-14 

<nondirect file designator>, 2-7 
in <diskheader I/O file part>, 2-7 
in <input designator>, 3-4 

<nondirect subscripted variable>, 2-14 
in <resident list>, 2-14 

NSPINITIALIZED MCS RESULT 
(Class = 30), 6-53 

NULL function, 3-23 
NULL STATION REQUEST DCWRITE 

(DCWRITE Type = 48), 5-61 
<number of segments>, 3-7 
<number of segments per block>, 3-7 

o 
OBJECT JOB INPUT REQUEST MCS 

RESULT (Class = 25), 6-50 
OBJECT JOB OUTPUT MCS RESULT 

(Class = 3), 6-15 
ODT MODE SWITCH NOTICE MCS 

RESULT (Class = 80), 6-56 
ODT-TO-MCS MCS RESULT (Class = 

17), 6-43 
ODT-TO-STATION MCS RESULT 

(Class = 18), 6-44 
<old queue>, 2-2 
ON statement, 2-13 
<one-dimensional nondirect array 

name>, 2-14 
<one-dimensional real array 

identifier> , 3-4 
in <input designator>, 3-4 
in <real read/write array 

row>, 3-36 
<one-dimensional real array reference 

identifier> , 3-4 
in <input designator>, 3-4 

one-dimensional real array reference 
identifier> 

in <real read/write array 
row>, 3-36 

<one-dimensional real direct array 
identifier> , 3-36 

ORGUNIT task attribute, 4-16 
<outstuff parameter>, 3-35 

in USERDA T A function, 3-35 

8600 0841-000 

p 

participating MCS, 5-16 
physical line attributes, 5-100 
<pointer expression>, 1-8 

Index 

in CHECKGUARDFILE function, 3-2 
in DCERRORANALYSIS function, 3-9 
in DCKEYIN statement, 2-4 
in <display location>, 3-16 
in <instuff parameter>, 3-36 
in <outstuff parameter>, 3-35 
in <pointer group>, 2-7 
in <standard location>, 2-17 
in USERDATALOCATOR 

function, 3-38 
<pointer group>, 2-7 
<pointer identifier>, 2-17 
<pointer variable>, 1-8 
POWER OFF PENDING MCS RESULT 

(Class = 32), 6-55 
primary attachment queues, 6-8 
<priority>, 2-3 

in COMBINE statement, 2-3 
in INSERT statement, 2-11 

<procedure identifier>, 2-14 
PSEUDOMCSNRF, 5-58 
pseudostations, 5-15 

Q 

QACTIVE queue attribute, 4-8 
QBLOCKSIZE queue attribute, 4-9 
QDISKERROR queue attribute, 4-9 
QHEADSIZE queue attribute, 4-10 
QINSERTEVENT queue attribute, 4-10 
QMEMORYLIMIT queue attribute, 4-11 
QMEMORYSIZE queue attribute, 4-11 
QMESSAGECOUNT queue 

attribute, 4-11 
QREMOVEWAIT queue attribute, 4-12 
QROWSIZE queue attribute, 4-12 
QSIZE queue attribute, 4-12 
QTANK queue attribute, 4-13 
queue 

current attachment, 6-8 
DCALGOL, 1-10 
primary attachment, 6-8 

QUEUE ARRAY declaration, 1-10 
<queue array identifier> 

in <queue array name>, 2-2 

Index-9 



Index 

<queue array name>, 2-2 
QUEUE ARRAY REFERENCE 

declaration, 1-12 
<queue array reference 

identifier>, 1-12 
in <queue array name>, 2-2 
in QUEUE ARRAY REFERENCE 

declaration, 1-12 
in SETUPINTERCOM function, 3-27 

<queue attribute>, 4-8 
<queue attribute name>, 4-8 
queue attributes, 4-8 

QACTIVE, 4-8 
QBLOCKSIZE, 4-9 
QDISKERROR, 4-9 
QHEADSIZE, 4-10 
QINSERTEVENT, 4-10 
QMEMORYLIMIT, 4-11 
QMEMORYSIZE, 4-11 
QMESSAGECOUNT, 4-11 
QREMOVEWAIT, 4-12 
QROWSIZE, 4-12 
QSIZE, 4-12 
QTANK, 4-13 
QUSERCOUNT, 4-13 

QUEUE declarations, 1-10 
<queue designator>, 2-2 

in A TT ACHSPOQ function, 3-1 
in DCWRITE function, 3-15 
in FLUSH statement, 2-10 
in <host queue>, 2-3 
in <input designator>, 3-4 
in INSERT statement, 2-11 
in <new queue>, 2-2 
in NULL function, 3-23 
in <old queue>, 2-2 
in QUEUE attribute, 4-8 
in QUEUEINFO function, 3-24 
in REMOVE function, 3-25 
in <secondary queue>, 2-3 
in SETUPINTERCOM function, 3-27 

<queue identifier>, 1-10 
in QUEUE declaration, 1-10 
in <queue designator>, 2-2 

queue reference word, 1-10 
QUEUEINFO function, 3-24 
QUSERCOUNT queue attribute, . 4-13 

Index-l0 

R 

READ-ONCE ONLY DCWRITE (DCWRITE 
Type = 34), 5-40 

<real array identifier>, 3-4 
in <input designator>, 3-4 
in <outstuff parameter>, 3-35 
in <real read/write array 

row>, 3-36 
<real array reference identifier>, 3-4 

in <input designator>, 3-4 
in <outstuff parameter>, 3-35 
in <real read/write array 

row>, 3-36 
<real array row> ,3-36 
<real direct array identifier>, 3-36 
<real read/write array row>, 3-36 

in <outstuff parameter>, 3-35 
in USERDATAREBUILD 

function, 3-39 
RECALL MESSAGE DCWRITE (DCWRITE 

Type = 41), 5-50 
RECALLED MESSAGE MCS RESULT 

(Class = 6), 6-19 
reconfiguration DCWRITE 

requests, 5-94 
<record number or carriage 

control>, 2-7 
remote files, output tanking for, 5-71 
REMOVE function, 1-8,3-25 
reserved words, B-1 

type 1, B-1 
type 2, B-1 
type 3, B-2 

<resident list>, 2-14 
RESIDENT statement, 2-14 
result messages 

general format (table), 6-1 
<row selector> 

in <input designator>, 3-4 
in <nondirect array row>, 2-14 
in <real read/write array 

row>, 3-36 
ROW ADDRESS diskheader 

attribute, 4-5 
ROWS diskheader attribute, 4-5 
ROWSIZE diskheader attribute, 4-6 

8600 0841-000 



s 
SA VEF ACTOR diskheade,r attribute, 4-6 
<secondary queue>, 2-3 
security considerations, vi 
SEND MCS RESULT MESSAGE DCWRITE 

(DCWRITE Type = 55), 5-66 
SET APPLICATION NUMBER DCWRITE 

(DCWRITE Type = 38), 5-46 
SET CHARACTERS DCWRITE (DCWRITE 

Type = 39), 5-47 
SET PSEUDOSTATION ATTRIBUTES 

DCWRITE (DCWRITE Type =, 

56), 5-67 
SET TRANSMISSION NUMBER DCWRITE 

(DCWRITE Type = 40), 5-49 
SET/RESET AUTOANSWER DCWRITE 

(DCWRITE Type = 102), 5-90 
SET /RESET LINE TOGS-T ALLYS 

DCWRITE (DCWRITE Type = 

103), 5-91 
SET /RESET LOGICALACK DCWRITE 

(DCWRITE Type = 43), 5-54 
SET/RESET SEQUENCE MODE DCWRITE 

(DCWRITE Type = 49), 5-62 
SETST ATUS function, 3-26 
SETUPINTERCOM function, 3-27 

operator request (variant = 2), 3-28 
< single-precision arithmetic 

variable>, 3-7 
<single-precision array row>, 3-9 
<single-precision simple 

variable>, 3-36 
<size>, 2-11 

in DCERRORLOGGER function, 3-11 
in <use size>, 2-11 

SIZE function, 3-33 
SIZE2 diskheader attribute, 4-6 
SIZEMODE diskheader attribute, 4-6 
SIZEOFFSET diskheader attribute, 4-6 
<source address>, 3-7, 
<source unit number>, 3-7 
SOURCE KIND task attribute, 4-16 
SOURCEST A TION task attribute, 4-16 
STAMCSNRF, 5-58 
standard form file title, 3-16 
<standard location>, 2-17 

in DISPLAYTOSTANDARD 
function, 3-16 

in STANDARDTODISPLAY 
statement, 2-17 

8600 0841-000 

ST ANDARDTODISPLA Y 
statement, 2-17 

statements, 2-1 
ALLOCATE, 2-1 
ATTACH, 2-2 
COMBINE, 2-3 
DCKEYIN, 2-4 
diskheader CLEAR, 2-6 
diskheader READ/WRITE, 2-7 
FLUSH, 2-10 
INSERT, 2-11 
ON, 2-13 
RESIDENT, 2-14 

Index 

ST ANDARDTODISPLA Y, 2-17 
STATION ASSIGNMENT TO FILE 

DCWRITE (DCWRITE Type = 

64), 5-69 
STATION ATTACH DCWRITE (DCWRITE 

Type = 1), 5-20 
STATION BREAK DCWRITE (DCWRITE 

Type = 66), 5-77 
STATION DETACH DCWRITE (DCWRITE 

Type = 42), 5-52 
, STATION DETACHED MCS RESULT 

(Class = 14), 6-28 
STATION EVENT MCS RESULT 

(Class = 1), 6-10 
STATION INTERROGATE DCWRITE 

(DCWRITE Type = 4), 5-34 
STATION REINITIALIZED (Class = 

31), 6-54 
STATION task attribute, 4-16 
stations without line assignments, 5-74 
<string literal>, 3-38 
<subarray selector>, 2-1 
<subscript> 

in <file group>, 2-7 
in <message designator>, 2-1 
in <nondirect file designator>, 2-7 
in <nondirect subscripted 

variable>, 2-14 
in <outstuff parameter>, 3-35 
in <queue designator>, 2-2 

SUBTRACT STATION FROM FILE 
DeWRITE (DCWRITE Type = 

69), 5-82 
SWAP LINE MCS RESULT (Class = 

10), 6-24 
SWAP LINES DCWRITE (DCWRITE Type 

= 128), 5-94 
<switch file identifier> 

in <nondirect file designator>, 2-7 

Index-11 



Index 

<switch file identifier> (cont.) 
in <resident list>, 2-14 

switched status format (MCS error result 
message format), 6-61 

switched status format (MCS Error result 
message format) 

automatic switched status, flags 
after, 6-65 

switched status format (MCS error result 
message format) 

DISCONNECT, flags after, 6-64 
fields, 6-61 
INTERROGATE SWITCHED STATUS, 

flags after, 6-64 
switched status format (MCS Error result 

message format) 
SET/RESET AUTOANSWER, 

flags, 6-64 
switched status format (MeS error result 

message format) 
switched status byte, 6-63 
using, 6-62 

switched status format (MCS error result 
message format) DIALOUT 

flags after, 6-63 
SWITCHED STATUS MCS (Class = 

7), 6-20 
SYSTEMSTATUS function, 3-34 

T 

tables 
DC WRITE errors, 5-7 
DCWRITE message formats 

(general), 5-2 
DC WRITE results, 5-11 
DCWRITE types, 5-6 
input message classes, 6-2 
MCS result messages format 

(general), 6-1 
tanking output for remote files, 5-71 
TANKING task attribute, 4-16 
<task attribute>, 4-14 
<task attribute name>, 4-14 
task attributes 

AUTOSWITCHTOMARC, 4-14 
BACKUPFAMILY, 4-15 
DESTNAME, 4-15 
DESTSTATION, 4-15 
DISPLAYONLYTOMCS, 4-15 
INHERITMCSSTATUS, 4-15 

Index-12 

task attributes (cont.) 
MAXWAIT, 4-16 
ORGUNIT, 4-16' 
SOURCEKIND, ' 4-16 
SOURCESTATION, 4-16 
STATION, 4-16 
TANKING, 4-16 

<task designator> 
in <task attribute>, 4-14 
in -:<task parameter>, 3-35 

<task parameter>, 3-35 
TRANSFER STATION CONTROL 

DCWRITE (DCWRITE Type = 

45), 5-56 
TRANSFER STATION CONTROL MCS 

RESULT (Class = 16), 6-40 
<translatetable identifier>, 2-14 
<truthset identifier>, 2-14 

u 
<unit number>, 3-40, 
UNITS diskheader attribute, 4-7 
<unlabeled statement>, 1-2 
UPDA TE LINE ATTRIBUTES DCWRITE 

(DCWRITE Type = 131), 5-103 
UPDATE LINE ATTRIBUTES MCS 

RESULT (Class = 19), 6-45 
<use size>, 2-11 
USERDAT A function, 3-35 
USERDAT AFREEZER function, 3-37 
USERDATALOCATOR function, 3-38 
USERDAT AREBUILD function, 3-39 

v 
<value array identifier>, 2-14 

w 
WFL card image (in CONTROLCARD 

function), 3-5 
WRITE AND RETURN DCWRITE 

(DCWRITE Type = 46), 5-60 
WRITE DCWRITE (DCWRITE Type = 

33), 5-38' 
WRITE TO OBJECT JOB'DCWRITE 

(DCWRITE Type = 65), 5-76 

8600 0841-000 



WRITE TO TRANSFERRED STATION 
DCWRITE CDCWRITE Type = 

53), 5-64 

8600 0841-000 

WRITESPO function, 3-40 

Index 

Index-13 





• UNISYS Help Us To Help You 
Publication Title 

Form Number 

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We will use 
them to improve the quality of your Product Information. Please check type of suggestion: 

o Addition D Deletion D Revision D Error 

Comments: 

Name Telephone number 
( ) 

Title Company 

Address 

City State Zip code 



X aUlI pa~op ~uole ~n~ 

r~-------------------------
aldelS ION 00 aseald adlU ImlliI.ti~I!r.IM@lt:1 ade! 

aJaH PI OJ 
I----------------~---------

BUSINESS REPLY MAIL 
ARST CLASS MAIL PERMIT NO. 817 DETROIT, MI 

POSTAGE WILL BE PAID BY ADDRESSEE 

UNISYS CORPORATION 
ATTN: PUBLICATIONS 
25725 JERONIMO ROAD 
MISSION VIEJO, CA 92691-9826 

11.1"111.1.11111.1,,".111.1"111111.1.1.11 •• 1 •• 1.1 

NO POSTAGE 
NECESSARY 
IF MAILED 

INntE 
. UNITED STATES 





I ~11111111~i III ~ III ~ ~I ~ ~IIIIIII ~ III~IIII ~ ~I ~ ~IIIII 
86000841-000 


